
canone3: A NEW SERVICE AND DEVELOPMENT FRAMEWORK FOR
THE WEB AND PLATFORM INDEPENDENT APPLICATIONS*

G. Strangolino, L. Zambon, Elettra, Trieste, Italy

Abstract
On the wake of former web interfaces developed at

ELETTRA [1] as well as in other institutes, the service
and development framework for the web and platform
independent applications named PUMA (Platform for
Universal Mobile application) has been substantially
enhanced and rewritten, with the additional objectives of
high availability, scalability, load balancing,
responsiveness and customization. Thorough analysis of
Websocket limits led to an SSE (Server-Sent Events)
based server technology relying on channels (Nchan over
NGINX) to deliver the events to the clients. The
development of the latter is supported by JQuery,
Bootstrap, D3js, SVG (Scalable Vector Graphics) and QT
and helps build interfaces ranging from mobile to
dashboard. Ultimate developments led to successful load
balancing and failover actions, owing to the joint
cooperation of a dedicated service supervisor and the
NGINX upstream module.

DESIGN RATIONALE
The system consists of a cluster of servers, thereafter

synonymously named services, and two client side
development environments. One is based on web
technologies on browsers. The second is a C++ client
library to build native Qt applications. The main
objectives of the service design are reliability, security,
scalability and accessibility. To satisfy them, a set of state
of the art technologies and software serve as the
groundwork of the system.

RELIABILITY
The design rationale identifies the principles of a

reliable service as follows. The system shall work:

• from any place and platform;
• at any time;
• regardless the number of clients
• included when part of the system is unavailable
• included when the network performance is

suboptimal or even subject to charges.

The first requirement ruled out the WebSocket
technology after an accurate analysis of its assets and
liabilities.

WebSocket
WebSocket is a computer communications protocol,

providing full-duplex communication channels over a
single TCP connection. The WebSocket protocol was
standardized by the IETF as RFC 6455 in 2011, and the

WebSocket API in Web IDL is being standardized by the
W3C. [2]

WebSockets are widespread and efficient when
handling huge amount of messages from both ends, where
duplex communication is continuously involved: Massive
Multiplayer Online (MMO) and messaging applications.

The list of liabilities is nevertheless long in our
situation:

• WebSockets can be potentially blocked by proxies;
• CORS (Cross-Origin Resource Sharing) [3] related

concerns;
• no multiplexing over HTTP/2 (implementing it on

both ends is complicated);
• no load balancing;
• susceptible to DoS;
• problems already taken care of in HTTP must be

solved ad hoc;
• operational overhead in developing, testing and

scaling is increased.

Some proxy servers are transparent and work fine with
WebSockets; others will prevent them from working
correctly, causing the connection to fail. In some cases,
additional proxy server configuration is required.

Load balancing is very complicated. When servers are
under pressure and new connections need to be created
and old ones closed, the actions that must be taken can
trigger a massive chain of refreshes and new data
requests, additionally overloading the system. It’s not
possible to move socket connections to a different server
to relieve one under high load. They must be closed and
reopened. It turns out that WebSockets need to be
maintained both on the server and on the client.

Multiplexing is usually handled by front end HTTP
proxies that cannot be handled by TCP proxies which are
needed for the WebSockets. Connecting to the sockets
and flooding servers with data is a possible eventuality.

Concerning the last weakness in the list, we observe
that mobile devices would maintain a WebSocket open by
keeping the antenna and the connection to the cellular
network active. Battery life would be reduced, heating
increased, and, where applicable, extra costs for data
usage applied.

SSE
Server-Sent Events (SSE) is a server push technology

enabling a client to receive automatic updates from a
server via an HTTP connection, and describes how
servers can initiate data transmission towards clients once
an initial connection has been established. They are
commonly used to send message updates or continuous
data streams to a browser client and designed to enhance
native, cross-browser streaming through a JavaScript API
called EventSource, through which a client requests a

__

* inspiration by Alessio Igor Bogani, Elettra, Trieste, Italy

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

User Interfaces and User eXperience (UX)

FRAR02

1023

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

particular URL in order to receive an event stream. The
Server-Sent Events EventSource API is standardized as
part of HTML5 by the W3C [4].

Server-Sent Events technology analysis underlined
some disadvantages; most of them do not appertain to our
environment:

• SSE is unfit for duplex communications;
• binary data cannot be sent;
• the number of connections on a web browser is

limited;
• mono-directional by nature, additional approaches

are required for duplex synchronous operations.

The third limitation in the record must be addressed in
web browser based applications, while it does not affect
clients of different nature.

Nevertheless, in our context the opportunities offered
by SSE outweight the weaknesses:

• SSE is based on HTTP, posing no issues with
proxies;

• multiplexing is implemented in HTTP/2
• messages bear an id: the server is aware if the client

misses one;
• data exchange requires a smaller number of

connections;
• on failure, the EventSource reconnects;
• the connection stream is based on events, it is read

only and goes from the server to the client;
• arbitrary events can be sent.

PUMA framework combines SSE with a channel based
event streaming (Nchan [5]), thus enforcing the
connection economy mentioned in the fourth item in the
preceding enumeration. The hitherto introduced benefits
offered by an SSE technology over WebSockets cover a
fundamental aspect of the reliability essential. In
particular, the any place, any time and platform principles
are backed up by SSE. In combination with channels, the
system gains scalability in reference to an arbitrarily high
number of clients using the service at the same time.

Figure 1 is a representation of the client – server
architecture based on Nginx, Nchan and the PUMA
service.

Figure 1: Nginx, Nchan and PUMA service use channels.

The next ingredient in our reliability recipe contributes
to maintain the service available to clients even when
parts of the system are unavailable. Nginx [6] comes into
play as a balancer to distribute the load across several
instances of the PUMA server and at the same time,

through a PUMA supervisor service, to manage failover.
Moreover, when Nginx and Nchan are combined with
Redis cluster [7] (Remote Dictionary Server), channels
attain high availability and failover capabilities [8].

SECURITY
The goal is to realize a service and its context safe

enough as to avoid tunnelling the traffic across a VPN.
The latter implies additional software and configuration,
hindering usability and reducing battery life, especially on
mobile devices. At the moment of writing, the network
architecture essential to achieve a proper level of security
has still to be laid out. The observations made in the
preceding section favour the choice of Nginx and HTTP
over WebSockets as far as protection from DDoS
(Distributed Denial of Service) is concerned. Nginx can
be adjusted to limit the worker processes and connections,
as well as the requests rate over time. Additionally, the
number of connections that can be opened by a single
client IP address can be curbed to protect the downstream
PUMA services.

SCALABILITY
A good infrastructure shall be designed with scalability

in mind. Reliability and security will be inherently
reinforced. Channels to which numerous clients tune in to
receive messages are an obvious representative of
scalability. Nginx combined with Nchan and Redis offer
horizontal scalability to the PUMA service. Figure 2
shows this principle, while Fig. 3 illustrates the initial
deployment of the PUMA service architecture at Elettra.

Figure 2: Horizontal scalability with Nginx.

ACCESSIBILITY
The interaction with the service is performed through

an open API relying on JSON (JavaScript Object
Notation) both on the request and the reply sides. A
simplified URL API for requests shall be included in a
future release. The API serves the web, the mobile and the
desktop applications.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

FRAR02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1024 User Interfaces and User eXperience (UX)

Figure 3: Horizontal scalability as deployed at Elettra.

Reliability, security, scalability and a generic API are
the main principles of the PUMA service design rationale.
In the following sections, the single components will be
described in more detail.

THE SERVICE
The caserver is the name given to the PUMA service

mentioned several times in the preceding sections. Since
PUMA is the evolution of an earlier project (dating to the
year 2006) named Canone, caserver is a nickname
referring to the Canone origins. As represented in Fig. 1
and Fig. 3, the client applications post their HTTPS
requests to the Nginx web server. The latter forwards
them to one or more caserver instances, working as a load
balancer. The service is an object oriented, modular and
plugin expandable C++ application relying on the cumbia
and cumbia-tango [9] libraries to access the Tango
control system in use at the Elettra synchrotron radiation
facility. Once a request is received by the service, up to
two actions take place:

• a synchronous reply is sent to the client immediately
and normally carries either the result of the required
operation enriched by additional information
dependent on both the request and the underlying
engine (e.g. from the Tango database) or an error
message;

• if the operation is a subscription to the value of a
source of data over time, updates are published on
the channel the client subscribed to within the same
request.

Clients, caserver and Nchan operate in a so called pubsub
arrangement. The service publishes messages to channels
using HTTP POST requests. Clients tune in to a channel
to receive data through Server-Sent events.

The main type of requests that can be made to the
server, herein named methods, are read, conf, write and
subscribe. All of them are synchronous: an HTTP
response is immediately sent back to the client. The
subscribe method has the additional effect of data updates
being delivered over a pubsub channel. A well behaved
client shall pack together multiple requests into a single,
more articulated, JSON string.

Engines and Modules
The service code is organised into modules. The Tango

control system in use at Elettra is accessed by a dedicated
module. This can be replaced (for example by an EPICS
engine) and the caserver adapts to another control system.

A module has an interface to process messages received
from clients and through factories several
implementations of a module can be installed. Thus we
can let the reader module use both the Tango and the
EPICS specific reader implementation. A module is
registered on the server and several ones can be installed
with a given priority. As a consequence, a message from a
client can be processed in sequence until one (or no)
module satisfies the request.

New modules can be written and added to the service,
although the preferred extension strategy is through the
plugin system.

Cumbia
Cumbia activities use the standard C++ threads.

Inspired by the Android AsyncTask interface [10] and
paired with cumbia timers and event loops permit a multi
threaded design of the service. Activities manage the
transmission of data over the channels, the main socket
server and plugins life cycles, the authorization process
for write operations and so on. The cumbia-tango module
is an abstraction layer facilitating the access to the
namesake control system. Further implementation details
are available on the project github page [11].

Plugins
The service features can be extended by plugins.

Plugins are dynamically loaded from a specific folder and
can be disabled as simply as deleting the corresponding
object from the file system. The caserver provides hooks
to which the plugins can register in order to receive
specific pieces of information. For example, hooks related
to readings notify plugins upon new data, subscribe and
unsubscribe operations. Likewise, the read module can
switch from an active to an inactive state, a message can
be delivered synchronously on a socket or entrusted to a
channel. All these events can be monitored by plugins.
The service supervisor [12], mentioned in the section
dedicated to reliability, queries a PostgreSQL database to
retrieve data about the health of the caserver instances in
execution. Such records are written by the ca-db-plugin
[13], hooked to the service socket receiver state change
and the periodic heartbeat events. Another plugin [14]
offers introspection capabilities straight through HTTP
representing in JSON (JavaScript Object Notation) format
diverse operating conditions of the server at a given
moment (number of activities, threads, readings, and so
on).

THE SUPERVISOR
In the extent of the reliability of the PUMA service, and

specifically for the accomplishment of the failover
automation, the supervisor operates in conjunction with
the ca-db-plugin discussed in the previous section. The

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

User Interfaces and User eXperience (UX)

FRAR02

1025

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

data recorded by the latter into a PostgreSQL database is
analysed at regular intervals to determine whether every
single caserver process is actually operating. Each
instance is expected to register some kind of information
periodically. If a unit fails, the supervisor undertakes
recovery operations, redistributing the load formerly in
charge of the missing service across the other processes
online.

The architecture is designed so that if a policy of
automatic and instantaneous restart of a broken down
caserver is adopted, the restarted process regains control
of its previous data sources1. The restart action must be
undertaken promptly so that the supervisor is unaware of
the failure.

The PostgreSQL database shall be centralised so that
every instance of caserver can save its state regardless the
host where it is executed.

Qt CLIENTS AND LIBRARY
Alongside platform independent web interfaces, Qt [15]

native applications written in C++ can be developed on
top of a library named cumbia-http. They are expected to
work on all platforms supported by the Qt framework
itself. More generally, any application written on top of
cumbia / Qt is able to run transparently either connecting
to the native control system engine2 or to the PUMA
service. The application does not need to be recompiled in
order to select the available or desired engine at startup.

Cumbia-http
Cumbia-http is a cumbia module offered alongside

engine specific ones such as cumbia-tango and cumbia-
epics. Whilst the last two connect to the respective control
systems natively and require complete access to the field
and the software installation on the device as dependency,
the HTTP module, connecting to the PUMA service, can
be used by Qt applications from anywhere.

Cumbia Multi Engine Applications
A cumbia Qt application is unaware of the module used

to read from sources and write to targets. The same
software can run in the control room, where the native
control system is thoroughly accessible, and at office or at
home on a computer laptop, wherefrom the control
system is unreachable and the native libraries are not
installed. A cumbia multi engine application loads the
desired module at runtime and offers the same user
experience and native performance both from the control
room and from home. From the developer point of view, a
control panel can be designed, built and tested with
utmost efficiency from anywhere using the caserver and
then deployed natively on the field. Developers and end
users alike treasured cumbia multi engine while working
from home during the COVID-19 pandemic.

WEB INTERFACES
Web interfaces are available on any device connected

to the internet all over the world without any custom
installation. Conversely, native applications benefit from
having full knowledge of hardware. However, as soon as
the quality and speed of web interfaces is close to native
applications’, they are preferable because of their
portability. An agnostic approach will implement all
options letting the user choose the results rather than the
technology. The same agnostic approach concerns the
kind of devices supported; displays can be in a range
about from 5 to 50 inches and can be touch or not; our
goal is supporting as much devices as possible.

Mobile devices are usually strictly personal; this
increases the opportunities of customization: apart from
the style, the user can use predefined screens or create
new ones arranging several items.

There is a particular screen called “starter”. Its purpose
is to launch all other screens. Users can customize the
starter screen either by a graphical tool or editing a JSON
text.

Often the request of maintainability over years is in
contrast with the choice of the most performing
technologies available at the moment. So a compromise is
necessary and the approach can be more aggressive or
more conservative.

The choices made within the PUMA web interface
development may be seen as conservative. We use JQuery
[16] which enhances and simplifies JavaScript and has
been quite stable over the past ten years. Bootstrap [17] is
very helpful in being adaptive.

We had been using React for two years and decided to
abandon it because in our particular use case the balance
between the disadvantages (time consumed to keep the
development environment updated) versus the advantages
(modularity, state machine etc) was not satisfactory.

Adaptive Design
Adaptiveness is mainly provided by Bootstrap (Fig. 4)

and by flexbox [18], which is a standard of CSS3
(Cascading Style Sheet) [19].

Within the PUMA framework a web designer is
available to produce device interfaces or simple
dashboards, all responsive because based on flexbox.
Screens are saved in JSON format in a PostgreSQL
database. Any saved screen can be used as a component
in a new screen. JSON screens are interpreted consistently
also by a previous app [1].

Advanced users can import in PUMA any HTML
(HyperText Markup Language) and SVG [20] file. We
consider "advanced users" those with a good knowledge
of HTML, JavaScript/JQuery and CSS, also the rest of
this section is addressed mainly to advanced users. Other
readers, if interested in such details, can find plenty of
explanations on the web. We suggest MDN (Mozilla
Developer Network).

__
1 Cumbia and QTango adopt the term “source” to name the quantity data
comes from, for example, a Tango attribute. Recovery pertains to the
context of readers, thus every reader has a “source” of data.
2 For example, Tango or EPICS native installations.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

FRAR02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1026 User Interfaces and User eXperience (UX)

Figure 4: Desktop and mobile version of the same screen.

Vector Graphics
SVG is used to produce 2D graphics, in particular large

machine synoptics. In this way a very good flexibility in
interaction with the user can be obtained; two different
JavaScript libraries allowing zooming in and out by using
the mouse wheel or by pinching are used. While zooming
or moving around, some contents are added, removed or
changed. In particular some variables are subscribed and
unsubscribed on pan or zoom change so that only the
visible ones (and a few side buffers) are continuously
updated (Fig. 5). The JavaScript function which
subscribes and unsubscribes variables, is called at a
maximum rate of 2 times per second.

Figure 5: Some variables are subscribed and unsubscribed
depending on the pan and zoom events.

In our working prototype this feature is completely
transparent to the user, induced to believe that all
variables are always updated without any loss in fluidity
when moving the point of view. A demo is available on
YouTube at the following URL:
https://www.youtube.com/watch?v=z7FUDB7w2aw .

SVG is optimal for managing very complex 2D
graphics and update any detail independently, but two
main limitations subsist: it doesn’t support 3D graphics
and is not the best choice for displaying large quantities of
data updated very quickly. WebGL [21] provides a very
efficient solution to both problems.

PUMA provides an online HTML editor with a side
preview which is constantly updated by the keyup event
from the editor itself (Fig. 6).

Figure 6: Web text editor with preview.

An authorized user can insert any HTML source which
may include JavaScript, CSS and SVG. The connection to
the control system can be implemented in any HTML or
SVG tag by inserting a class "puma", a unique id and a
custom data attribute [22] named "data-src”. Only these
steps are those necessary to connect to PUMA and there is
no need to include any JavaScript. There is another
optional attribute called "data-onupdate". Its value is the
name of a JavaScript function that is triggered when new
data is ready preventing the default update action. The
"data-onupdate" JavaScript function is called with 3
parameters: the new value, the id of the calling tag (the
same function can be used for more than one PUMA tag)
and the source timestamp.

A one to one correspondence between tag and data-src
is considered normal, though for exceptional cases this
correspondence can be superseded. For example an array
of booleans may be displayed as a table with green and
red icons in the first column and labels in the second;
such a table can be implemented using a hidden tag to
associate a data-src to a data-onupdate function switching
the colours of all icons. If a tag has to be updated
according to the value of two or more variables, all
variables should be associated to a different tag (hidden if
not directly displayed) and to the same data-onupdate
which provides a data synchronization mechanism and
ultimately updates the multi-dependant tag.

The same screen can be reused in different contexts by
inserting parameters into the data-src value.

SVG tags behave essentially in the same way as HTML
tags; nevertheless there are a few differences to be taken
cautiously in consideration, for example the JQuery [16]
expressions .is(":hidden") and .is(":visible") work fine on
HTML and SVG tags on Firefox, but they don't work on
SVG tags on Chromium; instead the almost equivalent
JQuery expression .css('display')=='none' works on SVG
on all the most popular browsers (Fig 7).

It isn't very difficult to produce a thousand SVG
elements image with a text editor, although a few
graphical editors are available, for example Inkscape [23].
They tend to produce a lot of extra tags, that can be
reduced by external tools which simplify the files.

In PUMA there are simplified versions of generic tools
to browse all available control system variables, start and
stop servers, monitor trends of a single variable. We also
experimented with launching both web screens and
desktop native applications from a browser. The second
operation is explicitly forbidden by JavaScript. We
overcame this limitation with a tiny bash script which
executes the browser with an id as parameter, and waits in
long polling mode [24] for a command to launch. Long

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

User Interfaces and User eXperience (UX)

FRAR02

1027

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 7: SVG on mobile.

polling is a cURL call to a particular page which receives
an answer (resolves) only when there is a new event (a
panel to be launched). Long polling is a technology much
less advanced than WebSocket and SSE, but in this
particular case it is still effective.

TEST PHASE
The PUMA service, the web interfaces and the cumbia

HTTP module have been used constantly and efficiently
during the whole COVID-19 pandemic. A dedicated
phase addressing stress and failover tests is currently
underway. Web and Qt clients have been written to
investigate and diagnose limits and points of failure.
Examination results shall be stored into a database so that
several parameters, such as synchronous reply time, speed
and resource usage under pressure, can be monitored in
the long run and improved across version updates. Initial
experiments prove that a failing service process is
detected by the supervisor and its load is redistributed
amongst the online instances of the cluster.

In order to evaluate the overall performance of PUMA
two web based tests have been developed: the first one
subscribes and unsubscribes a configurable number of
variables per second, the second one simulates panning
and zooming of a real screen. As a result we reached
about 300000 subscriptions per hour for several hours.

CONCLUSIONS
The PUMA framework proved to be essential to

develop and run graphical user interfaces from home
during the COVID-19 pandemic, the other sole
alternatives being either remote desktop solutions or X
forwarding through SSH (Secure Shell). The first imply
an amount of data compression degrading the graphics
level of detail along with a moderately slow interaction,
worsening to extremely sluggish in the second case.
Actually, the authors’ existing environment imposes two
SSH tunnels over a VPN (Virtual Private Network).

The present day provides plentiful means in terms of
computing speed and network bandwidth. Yet, they need
to be economized. The data exchanged between the
PUMA services and their clients involves only
information relevant to the user: configuration and values
from the control systems. In this sense, PUMA has an
“ecological” approach: every bit is essential to

knowledge, not even one carries redundant data and the
user experience is always immediate because the
resources of the device are operated natively. In case of
portable devices, a remarkable battery saving shall be
expected. Furthermore, due to the publisher – subscriber
pattern over channels, the deployment of the PUMA
framework in the control room on behalf of the native
control system would definitely relieve the pressure on
the devices and their servers. One need only think that
umpteen readings of the same variable by PUMA clients
translate into a single one to the control system.

The PUMA architecture has been planned with
security, scalability and fail-safety in mind. On one side,
the design contributes to administer the access and relieve
the pressure on the control system. From the clients
perspective, they are conferred scalable fast data
exchange and lean on a failover redundant structure.

REFERENCES
[1] L. Zambon, A. I. Bogani, S. Cleva, E. Coghetto, F. Lauro,

“Web and multi-platform mobile app at Elettra”, in Proc.
16th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’17), Barcelona,
Spain, Oct. 2017, paper TUSH103, pp. 984-988.
doi: 10.18429/JACoW-ICALEPCS2017-TUSH103

[2] https://en.wikipedia.org/wiki/WebSocket
[3] https://developer.mozilla.org/en-US/docs/

Web/HTTP/CORS/Errors

[4] https://en.wikipedia.org/wiki/Server-
sent_events

[5] https://www.nchan.io
[6] https://www.nginx.com
[7] https://redis.io
[8] https://nchan.io/#high-availability
[9] https://github.com/ELETTRA-

SincrotroneTrieste/cumbia-libs

[10] https://developer.android.com/reference/
android/os/AsyncTask

[11] https://gitlab.elettra.eu/puma/server/canone3
[12] https://gitlab.elettra.eu/puma/server/ca-

supervisor

[13] https://gitlab.elettra.eu/puma/server/ca3-
db-plugin

[14] https://gitlab.elettra.eu/puma/server/ca-
introspection-plugin

[15] https://www.qt.io/
[16] https://jquery.com/
[17] https://getbootstrap.com/

[18] https://developer.mozilla.org/en-US/docs/
Web/CSS/CSS_Flexible_Box_Layout/Basic_Con-
cepts_of_Flexbox

[19] https://developer.mozilla.org/en-US/docs/Web/CSS

[20] https://developer.mozilla.org/en-US/docs/Web/SVG

[21] https://www.khronos.org/webgl/
[22] https://developer.mozilla.org/en-US/docs/

Web/HTML/Global_attributes/data-*

[23] https://inkscape.org/

[24] https://en.wikipedia.org/wiki/Push_technology/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR02

FRAR02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1028 User Interfaces and User eXperience (UX)

