
TARANTA, THE NO-CODE WEB DASHBOARD IN PRODUCTION
M. Eguiraun∗, V. Hardion, Y. Li, M. Saad, A. Amjad, J. Rosenqvist, L. Nguyen, J. Forsberg

MAX IV Laboratory, Lund, Sweden
M. Canzari, V. Alberti INAF-OAAB, Teramo, Italy

H. Ribeiro, Atlar Innovation, Portugal
V. Alberti, INAF-OATs, Trieste, Italy

A. Dubey,Persistent Systems, Pune, India

Abstract
The remote control and monitoring of accelerators and

experimental setup has become essential when remote work
has become the norm for the last two years. Unlike the desk-
top user interfaces which have been developed for the use
from physical workstations, web application are naturally
accessible remotely via the ubiquitous web browsers. On the
other hand, Web technology development requires a specific
knowledge which has yet to be disseminated in the control
system engineering and desktop frameworks still have the
benefit of rapid, and easy development even for the non-
specialist. Taranta Suite is a collection of web applications
jointly developed by MAX IV Laboratory and the SKA Ob-
servatory, for the Tango Control System. In line with the
"no-code" trend for the users, truly little knowledge of web
technologies is needed. An operator can create a graphical
user interface on-the-fly and can share it instantly. Authenti-
cation and authorization ensures that the right access level
is given to the user. This paper will describe the system,
the details of its implementation, and the first usage at the
different facilities.

INTRODUCTION
There is no doubt about the usability and the optimised

user experience of web interfaces and applications in every-
day life situations. The last decade has seen an explosion
of these kind of developments. New tools, new frameworks
and new wide-spread applications have gained fame and
number of users and slowly displaced traditional desktop
applications. However, scientific environments are usually
built on traditional and well known infrastructure, lagging
behind software innovation and trends. MAX IV and SKA
facilities were pushing and promoting the usage of web ap-
plications in their respective communities and in 2019 they
joined efforts and gave birth to Taranta, a web application for
building user interfaces in a Tango ecosystem [1]. The tango
community renamed it from the previous Webjive name [2].

This new application is profiting from recent years of
development in User Experience (UX) and User Interface
(UI) web frameworks. It provides an out of the box, modern
and stylish environment for accessing the most important
functionality of a Tango device, from what is called the De-
vice View [2]. Simple and powerful enough for fast access,
however, the most remarkable functionality is the Dashboard

∗ mikel.eguiraun@maxiv.lu.se

View. This element is where the user can create its own user
interface by drag and drop components (which are called
Taranta Widgets) and easily configure and link them to Tango
devices. This is where the idea of No-Code plays a funda-
mental role, Taranta leverages the UI development to the
end user.

NO-CODE PARADIGM
The lead time to get a new user interface is usually very

long. The software development and UI design have to
follow a number of established stages starting from the user
requirement gathering to the usage of a final product. The
no-code trend define a way for any end-user to develop their
own software and then to make it available immediately to a
larger audience of the same end-user group [3]. This way,
user of a no-code system doesn’t need to be knowledgeable
in software development and how the software is deployed to
be able to add value into the system. All the infrastructure is
completely transparent and does not prevent fulfilling their
will.

There is a lot of advantage for the users to bypass the
traditional software development chain. First of all, as users
themselves, they know exactly what the software should look
like and which feature is expected. The users own the require-
ments like in any development method, although in a no-code
system many filters are avoided since the users develop their
own product. Writing down the requirements, understanding
the specification and code development throughout different
persons are some examples of filters which attenuate the
original idea.

The concept of accelerating the software development
has started years before the no-code trend arrived. Proto-
type generated by sketch of the Graphical User Interface
(GUI) in the Rapid-Application Development (RAD) [4]
made a step closer to the final product by developing only
the functionalities. An extension of the same concept ap-
pears in the early 2000s for the creation of UI based on the
definition of the domain i.e in the model development driven
(MDD) all the structure of the software (Model) and part
of its implementation is generated from the requirement.
Visual programming language helps the power-users with
enough software skills to design a system rapidly for their
local applications i.e workbench like LabView can produce
application with no manually written code code. The dis-
semination to a larger group of users can be delegated later
to the software engineers.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

User Interfaces and User eXperience (UX)

FRAR01

1017

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

In our Scientific Facilities and in particular in the Control
System, the software development has followed the same
trend all the long to the industry standard evolution. Ap-
plication like Taurus Designer [5] for the Tango Control
System and Control System Studio for EPICS [6] allows to
leverage the skills of the scientist to create GUI on top of
their Control System. No-code introduces another level of
independence for the user and rely on them to also publish
their software to an entire group of people without involving
any IT staff for the deployment, which is a large cost of a
software. Not only can the end-user benefit from this possi-
bility but also the they can leverage the use of technologies
traditionally separated, e.g. web technologies and control
system frameworks.

The No-code platform are designed from the web technol-
ogy for its low-cost of deployment of application. Only one
computer server running a web application is necessary to
allow many clients to access the program. On the contrary, a
desktop based application has to be deployed on every single
workstation which is usually a long and not user-friendly
process.

Although No-code is completely oriented to simplify
the end-user development, the software developers are still
needed to program the elementary bricks of the application.

TARANTA
A Taranta application is composed of two main elements:

the backend and the frontend application. The backend pro-
vides a GraphQL API to a Tango control system. The client
is a web application that provides a generic tango device
view, similar in functionality to the well known Jive desktop
application, but it also provides a dashboard. A blank canvas
for the users to build their User Interfaces.

Figure 1 displays how Taranta components are linked
together. It is composed of several applications, or micro-
services, this way each component is developed and tested
independently. The next sections will describe the most
relevant aspects of the main elements.

TangoGQL
GraphQL is a modern query protocol for the application

layer developed by Facebook [7]. It provides a unified inter-
face between the client and the server for performing data
oriented actions e.g fetching and manipulation. It removes
the need of having multiple endpoints for data manipulation
to/from the server and instead returns the data what the client
asks for over a single API endpoint. The advantage of this
approach is that the client asks explicitly for what it needs.
In addition, due to its schema-based implementation, the
extension of the API does not change the API interface so
that compatibility between versions is simplified.

TangoGQL [8] is an implementation of GraphQL over
Tango. It provides a communication based on web-socket [9]
for subscribing to asynchronous attribute value events, and
a GraphQL interface to the Tango database. The standard
operations over a Tango device are supported, for example

Figure 1: Structure of Taranta, at the bottom and connected
to the tango ecosystem there is the TangoGql interface, to
which the Taranta web application talks to. Together with
the authentication and repository database systems, Taranta
suite is complete.

read/write access to device properties and attributes, and
command executions. It is developed in Python 3.9.

Front-End
The front-end of Taranta is a React [10] application that is

used both to browse, inspect and control Tango devices and
to create and run dashboards, each composed of widgets. It
accesses the Tango Control System through the TangoGQL
API, the communication between Taranta and TangoGQL
is managed by an appropriate frontend component. The
first developed component was the Device Viewer, Figure 2,

Figure 2: Generic Tango device viewer. Several tabs are
available for displaying different types of information, device
properties, attributes, commands and logs. The attribute
view is further split into the different data types present in
the given attribute.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

FRAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1018 User Interfaces and User eXperience (UX)

which provides a generic view for any tango device running
in the system. It has a search section, which aims at helping
the user navigating the full tango device tree hierarchy. Once
the desired device is selected, the right section of the page
will display several navigation tabs for accessing device
properties, attributes (further split based on the data format),
commands and logs. Any user can see everything, but only
logged in users can modify attributes or execute commands.
The values of the attributes are updated at real time. In
addition, the selected device name is appended to the page
url, thus, it can be shared with others colleagues to access
the same view.

As monitoring tool the Device Viewer is a very fast way to
access a Tango device, but it lacks of any kind of customiza-
tion. In order to provide a configurable user interface the
Dashboard View was developed. It belongs to the Taranta
front-end but it is a very different user interface. As opposed
to the static device view, here the user can create their User
Interface starting from a blank page and simply dragging
and dropping widgets into it. Each widget comes with its
own configuration, depending on the purpose of the widget,
but they all provide a Tango device (or attribute) selection.

Taranta widgets A widget is a dashboard component to
serve the function of interacting with Tango devices. There
are different types of widgets. A command can be sent to
tango device through command related widgets. An attribute
can be read/write through specific attribute widgets. Using
widgets, users are able to monitor attribute changes and take
remote control operations.

Available widgets The available widgets fall into differ-
ent categories according to their functions: labels, attributes,
commands and plotting. The label widget is mainly used
to display static information. It is basic and also flexible
with a hyperlink feature, that can be configured by the user
to switch between different dashboards. It enables well-
structured dashboards.

The attribute widget family is used to display the value of
interested attributes, which also includes the device status.
The displayed information and text size can be customized to
user settings. Several different widgets are available depend-
ing on the data type of the attribute (numeric, boolean, etc.),
but also some widgets provides extra functionality for ex-
ample the SimpleMotor and SardanaMotor widgets, where
movement steps can be defined and move commands issued.

A command widget enables users to send commands with
parameters to tango devices. It also enables users to cus-
tomize widget settings based on their needs. Again, several
widgets are available for different command arguments and
data types.

The array type attributes have its own set of widget. For
example, a spectrum widget is a special attribute widget,
which allows plotting of 2-dimensional attributes. Multiple
spectrum attributes can be plotted on the y-axis against one
spectrum attribute on the x-axis . The plots are updated
when a new attribute value is pushed in by its associated

tango device. The rendering of plot is achieved through
Plotly [11], which enables user interaction with the plots
including zooming, extracting specific graph parts, and also
axes resetting. Several widgets are available providing dif-
ferent visualization options for example heatmaps, scatter
plots, table like view, a few others.

The variable selector widget is a new feature which en-
ables the interaction between a widget and a dashboard vari-
able. A dashboard variable allows users to create a para-
metric dashboard where a running device can be replaced
by a variable in widget configuration. Users can associate
a device to a dashboard variable and change device in run
mode. All widgets having this device which subscribed to
this variable will be updated with the new device value.

Currently 25 different widgets are available, and more
coming regularly due to requests from our user community.
Moreover, development is ongoing to allow users to create
new widgets from the existing ones.

Creating a new widget A widget is composed of a
definition (also called a widget definition) and a React com-
ponent. The definition is a declarative object describing the
characteristics of the widget and the inputs that it receives.

A widget definition starts with a JSON object. An example
of a definition is as follows:

const definition = {
type: " OUR_NEW_WIDGET ",
name: "Our New Widget ",
defaultWidth : "10" ,
defaultHeight : "15" ,
inputs : {

device : {
type: " device ",
publish : " $device ",

},
position : {

type: " attribute ",
device : " $device ",
attribute : " Position "

},
....

}
}

In this example a new widget is defined with some styling
options as well as the required input fields, in this particular
case a tango device must be defined and which attribute
of that device should be considered position. In addition,
Table 1 describes a brief description about required widget
definition keys.

Different types of inputs can be defined through their
corresponding input definition interfaces. For example, an
attribute can be defined with AttributeInputDefinition where
the bounded device and attribute name as well as other char-
acteristic keys are set. Different from other inputs, the device
name can be published to a variable which is available for
other inputs. For TypeScript implementation, the widget
inputs can be obtained through WidgetProps type mapping,
which makes the process much easier to develop a new wid-
get and avoid type inaccuracy [12].

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

User Interfaces and User eXperience (UX)

FRAR01

1019

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Table 1: Description of Widget Definition Keys

Key Type Description

type string
Type identifier for the widget.
Must be unique (e.g.
"ATTRIBUTE_PLOT").

name string
The name of the widget
shown to the user
(e.g. “Attribute Plot”).

defaultWidth number Default width
(in number of tiles)

defaultHeight number Default height
(in number of tiles)

inputs object

An object where the keys are
input names and the values
are corresponding to their
input definition.

In the corresponding React component, the declared in-
puts are made available through a prop named input. A
minimal example of a React component for our new widget
would as follows:

class OurNewWidget extends Component {
render () {

const {
position

} = this. props . inputs ;

return (
<div >

Position : { position . value }
</div >

);
}

}
export default {

component : OurNewWidget ,
definition

}

This minimal example describes how to create a basic
widget. All the rest of the required interaction with the dash-
board page as well all the communication with the tango
device is already handle by Taranta, no additional develop-
ment is required. Figure 3 shows the newly created widget
in action, in both editing mode for selecting a tango device
as well as in running mode displaying an attribute value.

Taranta Dashboard Repository
The dashboard repository is an API for fetching and stor-

ing the dashboards. It is crafted from ExpressJS and commu-
nicates with MongoDB to store and fetch dashboards. Few
endpoints are open to provide data to anonymous users, for
example, fetching the dashboards. Whereas other endpoints
are restricted and require a valid JWT (JSON Web Token)
to perform the respective function.

Figure 3: A minimal widget example. The top view displays
the widget in editing mode where the users selects the tango
device. The bottom view shows the widget in action.

Taranta Auth
Security of web applications has been recently gaining

enormous popularity. This could be due to its nature of
being accessible from various end-points and therefore of
potentially being an entry point to malicious attackers. Fur-
thermore, it could also contain sensitive data and years of
progress and their loss can be catastrophic. Several industry
standard protocols could be followed at application-level as
well as organization-level to enhance the security of web
applications and to ensure the data integrity. The Taranta
Auth is a micro-service based on NodeJS and provides an
authentication service to be use by the Taranta suite for
authenticating and authorising users and identifying their
shared groups. It uses JSON Web Tokens [13], an open
standard to digitally sign information for being transmitted
between services. Taranta Auth access an LDAP repository
or a JSON file to manage users or to retrieve user information.
An anonymous user can run dashboards and can browse and
inspect devices. However, to be able to send commands to
devices, to change their attributes and to create or modify
dashboards, an authentication is required.

USAGE
All facilities involved in the development have a very

different experience using Taranta. This is partly due to the
stage in which each facility is. MAX IV is in a stable user
operation phase while SKA is in building stage. Despite
these differences on the particular situation on each facility
the development has benefit for both experiences.

MAXIV
Almost every system in MAX IV uses Taranta in one

way or another, from accelerator operators to the beamlines,
including the whole range of support groups. The operators
use dozens of dashboards to monitor the insertion devices,
RF and water cooling systems in the LINAC, and also for
the status of the personal safety system. These dashboards
are primarily focused on monitoring usage, but they also
provide control functionalities, e.g. set-point adjustment of
the motor movements.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

FRAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1020 User Interfaces and User eXperience (UX)

Figure 4: Example of a dashboard for monitorization and control of MAX IV insertion device for a beamline.

Figure 5: Example of a dashboard for monitorization of
cooling systems in the Linac. There is one like this for every
klystron.

Figures 4 and 5 show working examples of production
dashboards. The usage approach is different, the first exam-
ple is more focused on the moveable elements of an insertion
device and thus, the user wanted to have the possibility of
driving those axis. The second example is oriented towards
cooling water trends over time, link widgets above the plot
allows to switch to different dashboards.

On the beamline’s side, the usage is focused on one hand
to provide a simplified overview of equipment by adding
into a dashboard only the most critical tango attributes of
an equipment. On the other hand, it is also used to provide
users with an easy to use interface to configure parts of
the experiment. Figure 6 displays a dashboard to configure
the timing pulse diagram for the data acquisition in Cosaxs
beamline.

There was a slow start with the adoption of Taranta, but
thanks to a few early adopters in the machine operators group
that provided valuable feedback as well as bug reporting,
Taranta is gaining popularity quickly. In addition, the knowl-
edge of widgets development has been improved so we are
able to provide new widgets faster than before, which helps
gaining trust from our user community.

SKA
Taranta is seen as a tool with a lot of potential within SKA.

At the current stage of the project’s development, there are

Figure 6: Dashboard for configuration of the timing strategy
for the data acquisition at Cosaxs beamline.

different categories of target users for Taranta. First, there
are control system developers who create the dashboards and
use them to inspect, debug and verify the devices they are
developing; secondly, other teams who want to verify the be-
haviour of a component and use dashboards provided by the
team who developed them; and lastly, managers or engineers
who may want to check the current status of the system or are
tasked with testing the Minimum Viable Product (MVP). Of-
ten, Taranta dashboards are used for showcasing the progress
in the development of the control system during demos. De-
pending on their envisaged use, dashboards are expected
to have different lifetimes and to require different levels of
analysis before realising them.

Figures 7 and 8 show two examples of dashboards realised
by SKA teams. The dashboard in 7 has been created by the
team that is developing Taranta after some interactions with
developers belonging to other teams. It allows to switch
ON/OFF the Central Signal Processor (CSP) subsystems as
well as to control them by configuring the set of resources to
be used and for sending a set of commands for executing a
scan (atomic part of an observation).. It also gives fast feed-
back on the state of subsystems. 8 shows a dashboard that is
mainly used for checking the "state readiness" of the MVP
for executing certain tasks (and allowing recovery of incon-
sistent states where possible) whilst conducting interactive
end to end test development.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

User Interfaces and User eXperience (UX)

FRAR01

1021

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

The close interaction with users of Taranta often promotes
the development of new widgets or functionalities, such as
the timeline widget, or triggers some usability improvements
for the tool. Moreover using this dashboard helped devel-
opers in other teams to early detect needed changes in the
control software and identify bugs.

Figure 7: Example of a dashboard for monitoring and control
SKA CSP.

Figure 8: Example of a dashboard to monitor the status of
various resources that are part of the SKA MVP.

FUTURE WORK
By the increase of user feedback a lot of new improvement

can be done in Taranta. The increased number of available
widgets requires a redesigned widget library element, possi-
bly with searching and sorting by type functionality. This

would make the life of our users a little bit easier. In addition,
several new widgets are under development. For example, a
grouping widget, onto which one can drop different widgets
and then group it into one entity. This would make designing
the interface layout smoother as well as give the users the
possibility to create their own widgets. Another interesting
widget under development is the synoptic, which aims at
displaying svg images and linking svg elements to tango
devices [14]. Moreover, optimisation on how and when the
application sends updated values to the client, as well as data
formatting improvements, specially for images, are on the
list. Last but not least important, there will be new widgets
coming to complement running the experiments, i.e. mov-
ing into web current functionality nowadays scattered over
desktop applications and command line applications.

REFERENCES
[1] Taranta Suite home page,
https://gitlab.com/tango-controls/web

[2] M. Eguiraun et al., “Web Interface to Tango Control Systems
at MAX IV”, presented at 12th NOBUGS Conference, BNL,
New York, 2018, unpublished.

[3] M. Woo, “The Rise of No/Low Code Software Develop-
ment—No Experience Needed?”, Engineering, vol. 6, no.
9, pp. 960-961, 2020. doi:10.1016/j.eng.2020.07.007

[4] J. Martin, Rapid Application Development, Indianapolis, IN,
USA: Macmillan Publishing Co., Inc, 1991.

[5] Tarus designer, https://taurus-scada.org/devel/
designer_tutorial.html

[6] Control System Studio,
https://controlsystemstudio.org/

[7] GraphQL, A query language for your API,
https://graphql.org/

[8] TangoGQL repository, https://gitlab.com/tango-
controls/web/tangogql

[9] The Websocket Protocol,
https://datatracker.ietf.org/doc/html/rfc6455

[10] React, A JavaScript library for building user interfaces,
https://reactjs.org/

[11] Plotly JavaScript Open Source Graphing Library,
https://plotly.com/javascript/

[12] MAXIV Taranta home page, How to create widgets,
https://webjive.readthedocs.io/en/latest/
writing_a_widget.html

[13] JSON Web Tokens, https://jwt.io/

[14] J. Forsberg et al., “A Graphical Tool for Viewing and Inter-
acting with a Control System”, in Proc. ICALEPCS’15, Mel-
bourne, Australia, Oct. 2015, pp. 681–684. doi:10.18429/
JACoW-ICALEPCS2015-WEM309

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRAR01

FRAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1022 User Interfaces and User eXperience (UX)

