©

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRALO2

DISCOS UPDATES

S. Poppi*, M. Buttu, G.Carboni, A.Fara, C. Migoni INAF - OA Cagliari, [09047] Selargius, Italy
M. De Biaggi, A. Orlati, S. Righini, F. R. Vitello, INAF - IRA, [40138] Bologna, Italy
M.Landoni', INAF - Osseravatorio Astronomico di Brera, Merate, Italy
'also at INAF - OA Cagliari

Abstract

DISCOS is the control software of the Italian Radio Tele-
scopes and it is based on the Alma Control Software. The
project core started during the construction of the Sardinia
Radio Telescope (SRT) and it further developed to support
also the other antennas managed by INAF (National Insti-
tute for Astrophysics), which are the Noto and the Medicina
antennas. Not only DISCOS controls all the telescope sub-
systems - like servo systems, backends, receivers and active
optic system - but it also allows users to exploit a variety of
observing strategies. In addition, many tools and high-level
applications for observers have been produced over time.
The development of this software follows test-driven method-
ologies, which, together with real hardware simulation and
automated deployment, speed up testing and maintenance.
We here describe the status of the DISCOS project and of
the related activities, also presenting its ongoing upgrades.

INTRODUCTION

The Italian National Institute for Astrophysics (INAF)
manages three single-dish radio telescopes: The Sardinia
Radio Telescope (SRT), the Noto and the Medicina radio
telescopes. These are open sky facilities; the international
scientific community is invited to submit observing projects
through calls for proposal, published twice a year [1]. The
telescopes cover radio bands from 305 MHz up to 26.5 GHz,
allowing many research topics to be explored. Examples are
pulsars, astrochemistry, extragalactic sources, space weather.
SRT and Noto are already provided with an active surface,
allowing for observations at much higher frequencies; Medic-
ina is planned to have it installed within spring 2023.

The control software plays a key role in an observing fa-
cility, allowing the users to perform the needed observations
by using proper strategies and modes, while ensuring the
quality of the acquired data. Therefore, in 2004 we started
developing NURAGHE, the SRT control software. In 2007
we parallely began the ESCS (Enhanced Single-dish Control
Software) project, devoted to the Medicina and Noto radio
telescopes. Eventually, in order to optimize the efforts, in
2015 the three development lines were unified in DISCOS,
a common control software for all the three telescopes.

DISCOS is built on top of the Alma Common Software,
which is based on CORBA [2]. This framework allowed us
to realize a modular software mostly made of common code-
base, reused and deployed at all sites, as much as possible.
Considering this, only a small part of the codebase (23%) is
telescope-specific, essentially in the low-level and no-logic

#

sergio.poppi @inaf.it
FRALO(2
994

control of the devices and of the telescope hardware [3]. In
2017 we refactored part of the code, in order to adapt it to
the upgrade of the framework to a newer version of ACS [4].
Also, we chose Github [5] to track issues and manage version
control.

Equally important is the development strategy. We fol-
lowed guidelines in the adoption of an approach called Be-
havior Driven Development (BDD) [6] which aims to test the
software behaviour and it is used together with Test Driven
Development (TDD) and unit testing strategies [7].

In the following sections we show the ongoing and
planned DISCOS upgrades. In particular we present the
integration of new instrumentation, such as new receivers
and backends, a new simulated environment of the SRT
hardware devices, a middleware DISCOS wrapper called
SURICATE and a simple web-based monitoring and alarm
system.

TELESCOPES UPGRADE

In 2019 INAF was granted a PON (National Opera-
tional Program) funding to upgrade the Sardinia Radio Tele-
scope and its infrastructure toward higher frequencies (up
to 100 GHz). Within this scope, up to a 15% of the overall
funding was aimed to also upgrade the Medicina and Noto
radio telescopes. The funded project includes the acquisition
and the installation of new receivers on the telescopes:

* Three coaxials receivers K/Q/W band (18-26 GHz,
34-50 GHz, 80-116 GHz). for Medicina, Noto and
SRT.

¢ 16-Beam W Band receiver (70-116 GHz) for SRT
¢ 19-Beam Q Band receiver (33-50 GHz) for SRT

* A bolometric millimetre camera for SRT operating in
the 77-103 GHz made of 408 detectors.

Furthermore, the PON project includes, as concerns the
SRT, the procurement of three digital data acquisition sys-
tems (backends), a new state-of-the-art metrology system,
an HPC system and laboratory instrumentation. Also, the
telescope minor servo system, which is responsible for the
proper positioning of the telescope optics, will undergo a
refactoring and a major upgrade.

It is worth noting that new receivers and new backends
will need a big effort in order to integrate them in the control
software. To do this, we exploited the ACS architecture and
the DISCOS modularity. Not only the new receivers have
the same interfaces, but also the communication protocols
are the same of the SRT first-light receivers.

Project Status Reports

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

The availability of new instrumentation will allow users to
exploit additional observing modes, so we are also upgrading
BASIE (the schedule creator), which is a fundamental tool
to plan and execute the observations. BASIE was designed
to create the schedule files required by DISCOS to carry
out continuum and spectroscopy observations, according
to different strategies - like on-the-fly scanning, on-off and
nodding [8]. Thanks to this tool, users do not need to deal
with the writing of the complex schedule files: they are only
asked to specify a combination of receiver and backend,
providing basic information on the celestial sources to be
observed, the desired strategy and the configuration of the
devices.

SIMULATORS

Writing a simulator helps the developers in writing more
reliable code for the actual control software of the radio
telescope, the DISCOS control software. Being able to test
the code without having to rely on the hardware represents
a huge advantage in the development and maintenance pro-
cesses. It speeds up the development of new features and
the bug fixing, keeping under control the codebase through
the adoption of continuous integration practices. Both unit
and functional tests are cleaner and shorter, no code mock-
ing is required, they work both over simulators and real
hardware. In addition, the integration of new components
is easier and more reliable, and the hardware itself can be
verified by running the simulator tests over it. A suite of
simulators, capable of reproducing different scenarios, can
be exploited to write and execute a great variety of tests
whenever a modification to the control software code gets
pushed to the main repository. All these considerations led
us to change our process to integrate new devices, so that
the writing of its simulator is now the mandatory first step.
To improve and speed up our capability to add simulators
to our environment, we developed a simulator framework.
The framework for the simulators in written in Python and
is composed of two layers. The topmost layer is in charge
of handling network communications, it behaves as a server,
listening for incoming connections from clients and relaying
every received byte to the other layer of the framework, the
simulation layer. This layer is where received packets are
parsed and executed. It can faithfully replicate the behavior
of the hardware, or it can simply act as a protocol interpreter
by providing back proper answers. [9]

Furthermore, the framework allows to test how the control
software code reacts under expected error conditions. In fact,
it provides an easy way to simulate unlikely scenarios that
are very difficult or, in some cases, impossible to replicate
by only using the hardware. This allows the developers to
write more reliable and robust code, likely permitting the
recovery from an error condition without having to resort to
a complete reboot of the system.

Project Status Reports

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRALO2

CLIENT

Receive

Command Response

Handle

NETWORKING LAYER

Command

Response

FRAMEWORK

' Update status .

Simulate execution

SIMULATION LAYER

Figure 1: Simulators framework layers and communication
behavior.

DEPLOYMENT

An automatic Ansible [10] pipeline creates users, con-
figures the network, sets up the shared file system, installs
all the required dependencies (i.e.: Alma Common Soft-
ware), installs all the required observing tools and finally
the DISCOS software, creating a fully-configured working
environment. Having an automated deployment means that
both development and production environments are aligned,
all the process is automatically documented and the system
can be easily updated and restored. Not only Ansible allows
the deployment on physical machines, but it can also pro-
vide, through Vagrant, virtual machines based on Oracle
VirtualBox.

A DISCOS installation is basically composed of:

* A manager hosting ACS services and maintenance tools

* A console, providing the user interfaces and accounts
for all the allowed observing projects

 Storage cluster, mounted with LustreFS

The deployment scripts allow to select which telescope the
installation is specific for and which branch or the tag from
the Github repository is to be provided [11].

In summary, all the DISCOS instances are well aligned
among all the installations. This allows us to speed up main-
tenance and bug tracking.

SURICATE

Suricate [12] is a middleware which exposes APIs to the
clients and offers an abstraction from the control system and
the programming language. Moreover, it allows DISCOS to
be easily extended bypassing the framework on which it is
based, getting advantage of new technologies.

Itis composed of a sampler that collects from DISCOS the
telescope status, its configuration and relevant parameters,
writing them in on a in-memory database (redis-db). Then a
different module, the db-filler, gets the data from the redis-db
to save them into a persistent SQL database. A HTTP server
gets requests from clients and reads the values from the
database, returning a JSON answer. Also, the HTTP server

FRALO2
995

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

receives user commands from clients, forwarding them to
DISCOS.

CLIENTS ‘

A

A4

REDIS-DB }4# DB-FILLER }»b{ SQL-DB

‘ SAMPLER }»>

44{ HTTP SRV ‘

‘ DISCOS ANTENNA CONTROL SOFTWARE

—read — write — commands [suricate []control software [] clients

Figure 2: Suricate is a middleware which offers API and
abstraction from the operating system and the programming
language.

CONCLUSIONS

DISCOS is continuously evolving as new instrumentation
is installed on the Italian radio telescopes. One of the major
upgrades we are performing is the integration of new high-
frequency receivers and data acquisition backends into the
control software.

Such upgrades are made easier by the development
choices the team previously made. The automatic deploy-
ment and software provisioning, together with the hardware
simulators, allow us to add new features while keeping soft-
ware robustness, speeding up maintenance and bug fixing.
The Suricate middleware, thanks to its abstraction from the
underlying control software, allows us to produce new ap-
plications (e.g. GUIs) exploiting also technologies that are
not supported by the ACS framework.

ACKNOWLEDGEMENTS

The Sardinia Radio Telescope is funded by the Ministry
of University and Research (MIUR), Italian Space Agency
(ASI), and the Autonomous Region of Sardinia (RAS) and
is operated as National Facility by the National Institute for
Astrophysics (INAF). The Medicina and Noto radio tele-
scope are funded by the Ministry of University and Research
(MIUR) and are operated as National Facility by the National
Institute for Astrophysics (INAF).

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

y FRAL(2
a 996

[0)

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRALO2

The Enhancement of the Sardinia Radio Telescope for the
study of the Universe at high radio frequencies is financially
supported by the Programma Operativo Nazionale (PON)
del MIUR “Ricerca e Innovazione 2014-2020” Avviso
D.D. n° 424 del 28/02/2018/ per la concessione di fi-
nanziamenti finalizzati al potenziamento di infrastrutture
di ricerca, in attuazione dell’Azione II.1 - Proposta Proget-
tuale PIRO1_00010.

REFERENCES

[1] https://www.radiotelescopes.inaf.it/.

[2] G.Chiozzietal., “The ALMA common software: a developer-
friendly CORBA-based framework”, in Proc. SPIE, vol. 5496,
p- 205, September 2004.

[3] A. Orlati, M. Bartolini, M. Buttu, A. Fara, C. Migoni,
S. Poppi, and et al., “Design Strategies in the Develop-
ment of the Italian Single-dish Control System”, in Proc.
15th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’15), Melbourne,
Australia, Oct. 2015, paper MOPGF110, pp. 330-333, http:
//jacow.org/icalepcs2015/papers/mopgf110.pdf,
doi:10.18429/JACoW-ICALEPCS2015-MOPGF110, 2015.

[4] A. Orlati, M. Bartolini, M. Buttu, A. Fara, C. Migoni,
S. Poppi, and et al., “Evolution in the Development
of the Italian Single-dish COntrol System (DISCOS)”,
in Proc. ICALEPCS2017, https://doi.org/10.18429/
JACoW-ICALEPCS2017-THPHA014, 2018.

[5] DISCOS repository, https://github.com/discos

[6] M. Buttu et al., “Rules of thumb to increase the software
quality through testing”, in Software and Cyberinfrastruc-
ture for Astronomy III, vol. 9913, p. 99130B, 2016. doi:
10.1117/12.2230626

[7] Bartolini et al., “DISCOS Project Status and Evolution To-
wards Continuous Integration”, in Astronomical Data Analy-
sis Software and Systems XXVI ASP Conference Series, Vol.
521, 2019.

[8] Righini S., Bartolini, M., 2016, Basie User Manual, IRA Tech-
nical Reports 492, http://www.ira.inaf.it/Library/
rapp-int/492-16.pdf

[9] Carboni G., and Buttu M., “Discos simulators documenta-
tion”, INAF Technical Reports 82, 2021. doi:10.20371/
INAF/TechRep/82

[10] Ansible web site, https://www.ansible.com/.
[11] https://github.com/discos/deployment

[12] https://github.com/discos/suricate

Project Status Reports

