Author: Polack, F.
Paper Title Page
Hexapod Control Upgrade at Synchrotron Soleil: Method and Results  
  • L. Amelineau, Y.-M. Abiven, C.B. Bourgoin, D.C. Corruble, C. Engblom, B. Leluan, A. Lestrade, F. Polack, M. Sebdaoui
    SOLEIL, Gif-sur-Yvette, France
  A Stewart Platform, a hexapod parallel robot variant, is comprised of six actuators providing movements in six degrees-of-freedom. In order to facilitate operation and maintenance, Low-level control has been successfully transferred from its original proprietary controller to a SOLEIL-standardized controller (Delta Tau Power Brick). Low-level control includes direct and reverse kinematics which can be adapted and tuned to the specific mechanical/geometric features of any Stewart Platform of similar build. The embedded (and therefore generic to Stewart Platforms) software also interfaces with generic and existing Tango devices making it easily accessible by users. The transition from ’black-box’ hardware and embedded software to standardized controllers with fully mastered control kinematics, provides hexapod users with SOLEIL durable operational support and maintenance. Dimensional metrology of the hexapod has shown dynamic and static performance to be equivalent to the old system. A new metrological method linking measurements and kinematics has been developed to compensate mechanical imperfections in order to improve performance. This paper will present the results of this work.  
slides icon Slides FRBR05 [5.391 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)