Author: Moreno, G.B.Z.L.
Paper Title Page
WEPV002 Position Scanning Solutions at the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS 613
 
  • C.S.N.C. Bueno, L.G. Capovilla, R.R. Geraldes, L.C. Guedes, G.N. Kontogiorgos, L. Martins dos Santos, M.A.L. Moraes, G.B.Z.L. Moreno, A.C. Piccino Neto, J.R. Piton, H.C.N. Tolentino
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA beamline at Sirius/LNLS*. Covering the range from 2.05 to 15keV, the probe consists of a fully-coherent monochromatic beam varying from 550 to 120nm with flux of up to 1e11ph/s/100mA after the achromatic focusing optics. Hence, positioning requirements span from nanometer-level errors for high-resolution experiments to fast continuous trajectories for high throughput, whereas a large flexibility is required for different sample setups and simultaneous multi-technique X-ray analyses, including tomography. To achieve this, the overall architecture of the station relies on a pragmatic sample positioning solution, with a rotation stage with a range of 220°, coarse stages for sub-micrometer resolution in a range of 20mm in XYZ and a fine piezo stage for nanometer resolution in a range of 0.3mm in XYZ. Typical scans consist of continuous raster 2D trajectories perpendicularly to the beam, over ranges that vary from tens to hundreds of micrometers, with acquisition times in range of milliseconds. Positioning is based on 4th order trajectories and feedforward, triggering includes the multiple detectors and data storage is addressed
* Geraldes, R.R., et al. ’Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS’ Proc. MEDSI20 (2020).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV002  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 05 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV026 Multi-Channel Heaters Driver for Sirius Beamline’s Optical Devices 705
 
  • M.M. Donatti, D.H.C. Araujo, F.H. Cardoso, G.B.Z.L. Moreno, L. Sanfelici, G.T. Semissatto
    LNLS, Campinas, Brazil
 
  Thermal management of optomechanical devices, such as mirrors and monochromators, is one of the main bottlenecks in the overall performance of many X-Rays beamlines, particularly for Sirius: the new 4th generation Brazilian synchrotron light source. Due to high intensity photon beams some optical devices need to be cryogenically cooled and a closed-loop temperature control must be implemented to reduce mechanical distortions and instabilities. This work aims to describe the hardware design of a multi-channel driver for vacuum-ready ohmic heaters used in critical optical elements. The device receives PWM signals and can control up to 8 heaters individually. Interlocks and failure management can be implemented using digital signals input/outputs. The driver is equipped with a software programmable current limiter to prevent load overheating and it has voltage/current diagnostics monitored via EPICS or an embedded HTTP server. Enclosed in a 1U rack mount case, the driver can deliver up to 2A per channel in 12V and 24V output voltage versions. Performance measurements will be presented to evaluate functionalities, noise, linearity and bandwidth response.  
poster icon Poster WEPV026 [2.174 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV026  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 06 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)