Author: Blackwell, B.
Paper Title Page
MOPV021 Upgrading the National Ignition Facility’s (NIF) Integrated Computer Control System to Support Optical Thompson Scattering (OTS) Diagnostic 173
 
  • A.I. Barnes, A.A.S. Awwal, L. Beaulac, B. Blackwell, G.K. Brunton, K. Burns, J.R. Castro Morales, M. Fedorov, R. Lacuata, R.R. Leach, D.G. Mathisen, V.J. Miller Kamm, S. Muralidhar, V. Pacheu, Y. Pan, S. Patankar, B.P. Patel, M. Paul, R. Rozenshteyn, R.J. Sanchez, S. Sauter, M. Taranowski, D. Tucker, K.C. Wilhelmsen, B.A. Wilson, H. Zhang
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
With the ability to deliver 2.1 MJ of 500 TW ultraviolet laser light to a target, the National Ignition Facility (NIF) is the world’s most energetic laser. This combination of energy and power allows the study of materials under conditions similar to the center of the sun. On fusion ignition experiments, plasma generated in the interior of the target shell can detrimentally impact the implosion symmetry and the resulting energy output. We are in the final stages of commissioning a significant new diagnostic system that will allow us to better understand the plasma conditions and improve our symmetry control techniques. This Optical Thompson Scattering (OTS) system consists of two major components: a probe laser beamline capable of delivering a world first 1 J of energy at 211 nm, and a diagnostic that both reflects the probe laser into the target and collects the scattered photons. Between these two components, the control system enhancements required integration of over 450 components into the existing automation suite. This talk will provide an overview of the system upgrade approach and the tools used to efficiently manage and test changes to both our data and software.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV021  
About • Received ※ 09 October 2021       Accepted ※ 10 February 2022       Issue date ※ 21 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAR02 Adaptations to COVID-19: How Working Remotely Has Made Teams Work Efficiently Together 550
 
  • R. Lacuata, B. Blackwell, G.K. Brunton, M. Fedorov, M.S. Flegel, D.J. Koning, P. Koning, S.L. Townsend, J. Wang
    LLNL, Livermore, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The National Ignition Facility (NIF) is the world’s largest 192 laser beam system for Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP) experiments. The NIF’s Integrated Computer Control System (ICCS) team conducts quarterly software releases, with two to three patches in between. Each of these software upgrades consists of deployment, regression testing, and a test shot. All of these are done with the team members inside the NIF control room. In addition, the NIF ICCS database team also performs the Database Installation and Verification Procedure dry run before each software upgrade. This is to anticipate any issue that may arise on the day of the release, prepare a solution for it, and make sure that the database part of the upgrade will be completed within the allotted time slot. This talk is about how the NIF ICCS software teams adapted when the LLNL workforce began working remotely due to the COVID-19 pandemic. These adaptations led to a better and more efficient way of conducting the NIF ICCS software upgrades.
LLNL-ABS-821815
 
slides icon Slides WEAR02 [1.586 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEAR02  
About • Received ※ 12 October 2021       Accepted ※ 09 February 2022       Issue date ※ 15 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)