

Double Crystal Monochromator Control System for the Energy Materials In-Situ Laboratory Berlin

Andreas Balzer Parvathi Devi Anna Ziegler

Introduction

Challenges

- Complex beamline
- Experimental constructions
- >15 EPICS IOCs
- New motion control hardware
- Follow devices on-the-fly or predefined path
- Fast and precise positioning
- Low-level programming on motion controller
- Support of low-level features in higher level software
- Diagnostic tools needed by scientist and software engineers
- Device based framework and adaption to old monochromator control software

Motion Control Hardware

Software Stack

PLC Program	Motion Program		
if collision stop motors endif	SPLINE X Y Z X Y Z M33 == 1 X Y Z 		

- EPICS IOC
 - Database
 - C++ Model
 - Specific features can be added
- Clients: EMP2, SPEC, LISE, ... Evaluating: Bluesky, Phoebus
 - Display Manager
 - Collaborate, Share Code
 - Python/Jython
 - Reduce overall number of programming languages, tools.

EPICS Support

EPICS CA or DB Access

Filters for encoder positions

Figure : Exponential filter implementation for encoder readouts.

Types of filters implemented include:

- Exponential filter
- Moving average filter
- Spike detection

Algorithm for smooth on-fly velocity profile generation

- Trapezoidal shaped motion not sufficient
- High precision point-to-point moves
- Closed-loop moves
- Multidimensional path
- Jerk limited profile
- Motion profiles continuous in 2nd derivative (acceleration)
- On-the-fly generated path predictable at any point of the trajectory
- Possible triggers in sync with movements

Motion States

CR1/CR2 Controller

Target Position Maximum: Velocity, Jerk, Acceleration

Long Range Spline Moves

DCM

1 Axis closed-loopPID Vff+ Programmed velocityprofile

PGM Continuous mode

Closed Loop End Positioning

- Generate Spline
- Changing gain close to target
- Smooth approach
- In-position band No direction inversion
- No vibrations

TODO

- Predictable path
- Good results for full stop directly to end-position
- Mechanical errors and non-linearities
- Extend algorithm for fast closed-loop deceleration phase

Figure: Deceleration phase

Motion Program Logic (DCM)

Piezo motors for crystal parallelism

Figure: Ray diagram and degrees of freedom of piezo motor system

Crystal System							
Axis	Motor	Range					
Crystal translation	Stepper motor	70mm					
	Piezo motor	90 µm					
Crystal Pitch	Piezo motor	90 µm					
Crystal roll	Piezo motor	90 µm					

Table: Motors and their ranges

Γ		[
	DAC		Amplifier -	Motor	-	Encoder	*

Figure : Open-loop system

Closed loop system

Requirements

- 1. Setpoints in micro radians
- 2. Pitch and roll positioning in closed loop
- 3. Stable and fast closed-loop control

 X_1 =distance between pitch and height encoders. X_2 =distance between roll and height encoders.

Results

Figure (a) A pi signal response of the measured system and estimated system

Figure (b) The closed-loop performance of the roll piezo motor

Diagnostic: Continuous Feedback

EPICS wf-records monitored by client software

Feedback module processes data

Poll task checks/reads data package

PLC code calculates and fills data package in user buffer

Acknowledgement

Jens Viefhaus Peter Baumgärtel **Roland Müller** Mihaela Gorgoi **Andreas Gaupp Gerd Reichard** Winfried Frentrup **Joachim Rahn** Olaf Pawlizki

Götz Pfeiffer Thomas Birke Benjamin Franksen Götz Pfeiffer Maha Dürr Sven Wrede Marco Witt Ervis Suljoti

References

- 1. TPMAC Diamond Light Source Branch, https://github.com/dls-controls/pmac/tree/dls-master/pmacApp
- 2. "Recent Developments in Synchronised Motion Control at Diamond Light Source", 14th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Grenoble,2011.
- 3. Kay Kasimir, Kunal Shroff, "Phoebus, EPICS Collaboration Meeting.", June 2016, ANL
- 4. A. Balzer, P. Bischoff, R. Follath, D. Herrendörfer, G. Reichardt, P. Stange, "Diagnostics and Optimization Procedures for Beamline Contr at BESSY", 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 2005.
- 5. A. Balzer, R. Follath, E. Suljoti, M. Witt, "Status of the Continuous Mode Scan for Undulator Beamlines at BESSY II", 15th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Melbourne, 2015.
- 6. B. P. Lathi and R. A. Green. "Essentials of Digital Signal Processing." Cambridge: Cambridge University Press, 2014.
- 7. Armenise, Giuseppe, Marco Vaccari, Riccardo Bacci Di Capaci and Gabriele Pannocchia. "An Open-Source System Identification Package for Multivariable Processes." 2018 UKACC 12th International Conference on Control (CONTROL) (2018):152-157.
- 8. Ljung, L. "MATLAB System Identification Toolbox User's Guide. The Mathworks." Inc., Sherborn, Massachusetts (1986).
- 9. Youssef, A. "Optimized PID tracking controller for piezoelec-ric hysteretic actuator model." World Journal of Modelling and Simulation 9.3 (2013): 223-234.
- 10. Brahim, Mouhanned. "Modeling and Position Control of Piezoelectric Motors." Diss. 2017.
- 11. Tan, K. K., Tong Heng Lee, and Huixing X. Zhou. "Micropositioning of linear-piezoelectric motors based on a learning nonlinear PID controller." IEEE/ASME transactions on mechatronics 6.4 (2001): 428-436.
- 12. Li, Di, et al. "The implementation and experimental research on an S-curve acceleration and deceleration control algorithm with the characteristics of end-point and target speed modification on-the-fly." The International Journal of Advanced Manufacturing Technology 91.1-4 (2017): 1145-1169.