Very Lightweight Process Variable Server

Paper ID: WEPHA151

BROOKHIAEN Andrei Sukhanov, James Jamilkowski

% 9
ATIONAL LABORATOR : \
Brookhaven National Laboratory, Upton, NY, USA i

P u re Pyt h 0 n liteAccess: access to PVs at liteServer

Modern instruments are often supplied with rich FEATURES

proprietary software tools, which makes it ditficult to Supported reaquests , ,
integrate them to an existing control system. The ep d *Create access Ob]ECt to PV (OF mUItlple PVS)

o y : :
liteServer is very lightweight, low latency, cross-platform info": returns a list of dEVICES, parameters manyPVs = PV(('host;port',('devl','dev2',...),

network protocol for signal monitoring and control. It or features ('parl','par2',...)))

provides very basic functionality of popular channel "get“ get values or features e.g. to access all parameters of devl:
access protocols like CA or pvAccess of EPICS. It allPVs = PV(('host;port',('devl’))

> LI | ! 1 ! .' '. e ® °
supports request-reply patterns: 'info’, 'get' and 'set set: .SeJ[ VEI]UG? or features . . *[Jge PV.IIlfO() to get information about
requests and publish-subscribe pattern: 'monitor' request. *'monitor': defines a callback which will be features

called each time the value changes (not fully| | nanyevs.info()

MOTIVAIION implemented yet). PV.value is python @property, to get values:

* Provide control for devices connected to values = manyPVs.value
non-linux machines. Returned data .E(:I sPthsvalilees .
. . . o any .value = valu
* Provide control for devices using 'get’ returns a dictionary, keys are

proprietary software (through DLLs or 'device:parameter’, values are lists of objects: | |Example

shared libraries). {'dev1:counters’: {'value': [-10, 10, ..., Access to a Single PV:

* Provide minimal latency of the ethernet ' ' 1[120, 160, 3], 'uint8'|} } from liteAccess import PV
transactions. aPV = PV(('localhost;9700',('devl"),

. « o ('frequency')))
* Allow for implementation in FPGA Multi-dimentional arrays (numpy) ?Pge\lzrllf(; 0 o
without CPU core. {'devl:image': {'value" array([[[224, 1, 2], e ¥ T

'count': [1],

* Easy integration to existing Control [ 3,4, 5], 'features': 'RW',
| 6, 7, 8] 'desc': 'Update frequency of all counters',

Architecture (RHIC ADO, EPICS T ‘opLimits': [0, 10]}}

215, 216, 217] abPV.value
-~ -~ ° :218, 219, 220: { 'deVl:frequenCY' . { 'value': []..O] }}
liteServer is a possible g

alternative to EPICS Channel : [[120, 160, 3], 'uint8']}} Access to multiple PVs:

manyPVs = PV(('localhost;9700',('devl', 'dev2'),

Access for small systems (' frequency", 'pause’)))

Access-control-ready TaEYP‘lfsévalue Cval on

. . . '‘devl:rrequency': 'value': . ,

CLIENT-SERVER MODEL Username and program ID information is ‘devl:pause': {'value': [True]},
supplied in the client request, it can be used ‘devz:frequency’: {'value': [1.0]},

. o 'dev2:pause': {'value': [False]}}
on the server side to protect access to critical

Steps

Device Application

or PVs.
Bridge to . STATUS
EPICS or STATUS

UBJSON | RHIC ADO
e liteAccess Spre adsheet GUI ,_(PYQtS)_ Several devices at RHIC are served by the liteServer, hosted

: ) on Windows and Raspberry Pi platforms:
Fig.1 Chent Server Model * Automatic conversion of parameters to - Magnetometers

GUI elements: Buttons, TextEdits, e [aser interferometers

. . : SpinBoxes, CheckBoxes.  Infrared cameras.
Minimal Requirements sUser-confi gurable Devices are integrated into the RHIC Control Architecture.

* UDP stack. -~ Transter of several-megabyte data samples at 50 MB/s has
e UBJSON 1 been demonstrated.

_ Program sizes: 350 lines both liteServer and liteAccess.
e Pvthon. Device: server

serverversion 'v23a 2019-06-21'

server:host  ‘acnlin23.pbn.bnl.gov! TODO List

UBJSON Advantage server:status [ * Implement liteServer in FPGA.

* Complete compatibility with the JSON specification — Device: devl

is a 1: j — * Support the 'monitor' request.
there is a 1:1 mapping between standard JSON and ay1-counters -10. 10. 10. 10. 10. 1... PP d

UBJSON. * Add optional TCP pl‘O’[OCOl (for large transfers).

* Ease of implementation. evl:incre... -1,1,1,1,1,1,1,1,... A
* Improve multi-client performance.

*Easy of use. evl:freque... | 1.00 . o | |
* Speed and efficiency — UBJSON uses data * Plotting (Imaging is supported by an imageViewer)

representations that are (roughly) 30% smaller than their evl:pause V]| devl:pause

compacted JSON counterparts and are optimized for fast evl:ireset devl:resef _
parsing. Streamed serialization is supported, meaning evl:image (120, 160, 3): [[[224 REFERENCES

that the transfer of UBJSON over a network connection | _ r r
, 17 Device: dey? https://github.com/ASukhanov/liteServer

can start sending data before the final size of the data is

known. 13 devZ:counters -2878, 4295, 4197, 3...
ACKNOWLEDGMENTS




	Slide 1

