
MOTIVATION

REFERENCES

Very Lightweight Process Variable Server
Andrei Sukhanov, James Jamilkowski

Brookhaven National Laboratory, Upton, NY, USA

Modern instruments are often supplied with rich
proprietary software tools, which makes it difficult to
integrate them to an existing control system. The
liteServer is very lightweight, low latency, cross-platform
network protocol for signal monitoring and control. It
provides very basic functionality of popular channel
access protocols like CA or pvAccess of EPICS. It
supports request-reply patterns: 'info', 'get' and 'set'
requests and publish-subscribe pattern: 'monitor' request.

https://github.com/ASukhanov/liteServer

STATUS

Several devices at RHIC are served by the liteServer, hosted
on Windows and Raspberry Pi platforms:

● Magnetometers
● Laser interferometers
● Infrared cameras.

Devices are integrated into the RHIC Control Architecture.
Transfer of several-megabyte data samples at 50 MB/s has
been demonstrated.
Program sizes: 350 lines both liteServer and liteAccess.

FEATURES

liteAccess: access to PVs at liteServer

● Provide control for devices connected to
non-linux machines.

● Provide control for devices using
proprietary software (through DLLs or
shared libraries).

● Provide minimal latency of the ethernet
transactions.

● Allow for implementation in FPGA
without CPU core.

● Easy integration to existing Control
Architecture (RHIC ADO, EPICS)

Access-control-ready
Username and program ID information is
supplied in the client request, it can be used
on the server side to protect access to critical
PVs.

ACKNOWLEDGMENTS

Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy

Paper ID: WEPHA151

UBJSON Advantage
● Complete compatibility with the JSON specification –

there is a 1:1 mapping between standard JSON and
UBJSON.

● Ease of implementation.
● Easy of use.
● Speed and efficiency – UBJSON uses data

representations that are (roughly) 30% smaller than their
compacted JSON counterparts and are optimized for fast
parsing. Streamed serialization is supported, meaning
that the transfer of UBJSON over a network connection
can start sending data before the final size of the data is
known.

Minimal Requirements
● UDP stack.
● UBJSON
● Python.

Supported requests
●'info': returns a list of devices, parameters
or features

●'get': get values or features
●'set': set values or features
●'monitor': defines a callback which will be
called each time the value changes (not fully
implemented yet).

Returned data
'get' returns a dictionary, keys are
'device:parameter', values are lists of objects:
 {'dev1:counters': {'value': [-10, 10, ...,
'numpy': [[120, 160, 3], 'uint8']}}

Fig.1 Client – Server Model

liteAccess

PV
PV
PV

Device
UDP

liteServer

Application
or

Bridge to
EPICS or

RHIC ADOUBJSON
format

Multi-dimentional arrays (numpy)
{'dev1:image': {'value': array([[[224, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 ...,
 [215, 216, 217],
 [218, 219, 220],
 [221, 222, 223]],
 [[2...t8), 'numpy': [[120, 160, 3], 'uint8']}}

Spreadsheet GUI, (PyQt5)
●Automatic conversion of parameters to
GUI elements: Buttons, TextEdits,
SpinBoxes, CheckBoxes.

●User-configurable

Steps
●Create access object to PV (or multiple PVs)
manyPVs = PV(('host;port',('dev1','dev2',...),
('par1','par2',...)))

e.g. to access all parameters of dev1:
allPVs = PV(('host;port',('dev1'))

●Use PV.info() to get information about
features
manyPVs.info()

●PV.value is python @property, to get values:
values = manyPVs.value

●To set values
manyPVs.value = values

Example

 Access to a single PV:
from liteAccess import PV
aPV = PV(('localhost;9700',('dev1'),
 ('frequency')))
aPV.info()
{'dev1:frequency': {'value': '?',
 'count': [1],
 'features': 'RW',
 'desc': 'Update frequency of all counters',
 'opLimits': [0, 10]}}
aPV.value
{'dev1:frequency': {'value': [1.0]}}

 Access to multiple PVs:
manyPVs = PV(('localhost;9700',('dev1','dev2'),
 ('frequency','pause')))
manyPVs.value
{'dev1:frequency': {'value': [1.0]},
 'dev1:pause': {'value': [True]},
 'dev2:frequency': {'value': [1.0]},
 'dev2:pause': {'value': [False]}}

liteServer is a possible
alternative to EPICS Channel
Access for small systems

TODO List

● Implement liteServer in FPGA.
● Support the 'monitor' request.
● Add optional TCP protocol (for large transfers).
● Improve multi-client performance.
● Plotting (Imaging is supported by an imageViewer)

Pure Python

Very Lightweight Process Variable ServerVery Lightweight Process Variable Server

ABSTRACT

CLIENT-SERVER MODEL

	Slide 1

