
SYNCHRONISING	LabVIEW	DEVELOPMENT	AND
DEPLOYMENT	ENVIRONMENT

O.	O.	Andreassen,	C.	Charrondiere,	M.	Miskowiec,	H.	Reymond,	A.	Rijllart
CERN,	Geneva,	Switzerland

AB
ST

RA
CT

BA
CK

G
RO

UN
D

WEPHA129	

SY
ST

EM
 A

RC
HI

TE
CT

UR
E

CO
NC

LU
SI

O
NS

LABVIEW.SUPPORT@CERN.CH

LabVIEWTM with its graphical approach is suited for engineers used to design and implement systems based

on schematics and designs. Being a graphical language, it can be challenging to keep track of drivers,

runtime engines, deployments and configurations since most of the tools on the market aimed towards this

are implemented for textual languages. Configuration management is possible in the development

environment via version control systems such as PerforceTM, however at CERN and in the open source

software development community in general, the tendency is moving towards Git.

In this paper we demonstrate how the combination of automated builds, packaging, versioning and

consistent deployment can further ease and speed up development, while ensure robustness and

coherency across systems. We also show how an in-house built tool called “RADE Installer” synchronises

both development environments and drivers across workstations, empowering graphical development at

CERN, by merging the open source toolchains with the workflow of LabVIEWTM. RADE installer represents

a solution for LabVIEWTM to keep track of drivers, runtime engines, deployments and configurations.

Introducing Nexus and the possibility to break packages into singular elements in the RADE CI engine has

greatly improved our capacity to both release and keep track of packages. Cross dependent developments

using both Java, C++ and LabVIEWTM have benefitted from the new structure and we have become more

conscious in designing packages with test and traceability in mind. The introduction of the RADE installer in

the team is still an ongoing process, but the benefits outweighs the efforts so far.

It has become easier to share and reuse code, and adding packages to the installer encourages a workflow

that reduces errors in deliveries.The RADE installer still does not support full environment installation, so the

plan is to add this functionality in the next release. We also have to follow closely what National Instruments

plans to do with their Next Generation environment and make sure the changes we do are compatible with

future releases

The	 RADE	 (Rapid	 Application

Development	Environment)	palette 	is

the	 solution	 we	 offer	 at	 CERN	 to

develop	 expert	 tools,	 machine

development	 analysis	 and	 test

facilities,	 integrated	 with	 the	 CERN

control	infrastructure.

The	Build	Engine	based	on	Hudson	is	taking
care	of	the	compilation	processes	for	all	the

RADE	supported	platforms.

Scientific	Linux	CERN	 is	mainly	used	 in	 the

control	 infrastructure	 and	 operational

environment.	 Windows	 is	 used	 on	 the	 test

benches,	 local	 control	 systems	 and	 for

analysis	tools.

An	example	of	simple	GET	data

function	used	to	readout	values

from	a	device,	within	the	CERN

control	infrastructure.

An	 example	 of	 simple	 SET

parameters	 function	 used	 to

change	 the	 setup	 of	 a	 device

within,	 the	 CERN	 control

infrastructure.

New CERN constraintsMarket survey

Accelerators Control System OSContinuous Integration serverVersion Control

The RADE build cycle has not changed

much after introducing the RADE

installer and Nexus repository manager.

The main challenge was breaking all the

different libraries into individual installers

and map their interdependencies. Since

everything in the past was shipped as

one big package, we didn’t have to

manage the interoperability and

compatibility between packages,

however with the new release scheme,

we always have to take care that none of

the libraries break or fail when doing a

release. As an added bonus, the release

time has gone down even more, and we

can now release stable packages within

minutes and add new packages

incrementally without affecting users.

The RADE Installer can be launched from within the

LabVIEWTM development environment. An option available

from the “Tools -> RADE” menu will launch a statically

compiled version of the installer, built using packed project

libraries. This allows for instant installation of a desired

package without having to restart LabVIEWTM. Only in cases

where a system package requiring restart of the operating

system does one have to restart the environment.

The RADE installer was implemented with ease of use and

efficiency, in terms of workflow, in mind. The developer should

not need to focus on versioning and inter module compatibility,

rather get the necessary dependencies installed with as little

interactions as possible. If you check out an existing project

from git that contains any package in the RADE eco system,

you only have to reference the project and the installer will find

the implicit dependencies. Any update and new package are

visible from the interface, and the user can toggle between

“public”, “RADE” and “VIPM” packages. The user can also

choose if updates should be installed automatically (hidden) or

manually.

After evaluating several different commercial and open source

products (see Table 1), it would initially seem like many of the

package managers on the market could be suitable for our needs,

however any cross-platform tool that was close to offering what we

wanted, either would add a higher cost than the added value or it

would be tailored to its dedicated environment and therefore not

suitable for the job.

After a few internal review rounds, evaluating tools and looking at

the results forming from the data, we concluded with that the best

path for us to go, fully being able to control and adapt the

environment to our need, would be to make a custom-tailored tool

that could hook in to other existing technologies and the same time

being compatible with existing environments, ensuring compatibility

and reducing risk of cross pollution between installers.

After evaluating and testing several repository tools, some of which

are shown in Table 2 above, we narrowed the list down to 2 possible

candidates that would suite our needs: Sonatype Nexus and GitLab.

At the time the comparison was done, GitLab was not initially

intended to be a repository solution, but as time has gone by, more

and more features have been added and it is now (2019) a full

“DevOps” solution that supports the whole software workflow,

therefore, given the features available we went decided to use

Nexus as our repository host.

With	 the	 increase	 of	 dependencies,	 complexity	 and	 the

needs	 for	 quick	 prototype	 delivery,	 we	 started	 to	 invest	 in

build	 automation	 and	 Continuous	 Integration.	 The	 release
process	was	reduced	from	one	day	to	about	one	hour.

