
Introduction

At ISIS, we are developing the all-purpose next-generation IBEX beamline control system based on EPICS.

Developers and users alike need to have full confidence that IBEX works, especially since it is replacing an

already fully functional system.

The complexity of a system of this size can be hard to manage, especially with a changing team of developers.

To meet this challenge, we require robust tools and processes to ensure correct functionality at all times.

Automated testing is an essential development tool that helps provide us this confidence.

Testing Tools for the IBEX Beamline Control System

T. Löhnert, F. A. Akeroyd, K. Baker, D. Keymer, A. J. Long,

C. Moreton-Smith, D. Oram (ISIS, STFC)

J. R. Holt, A. McGann, T. A. Willemsen, K. J. Woods (Tessella)

Continuous Integration

• We use Jenkins platform for CI

• Tests are run every time code is

changed & once every night

• Build status are displayed on

screen in IBEX office

• Also performs sanity checks:

git repositories, wiki spelling,

beamline configuration validity

Future Work

• Increase unit test coverage: tools above were introduced over course of project – new code generally has

good testing, but old parts of system can be lacking in places

• Some manual system tests remain which can be automated (balance effort vs. priority)

• Testing user scripts – “dry run” option to expose mistakes before they cause failures and lost time

Unit Tests

• Using built-in frameworks

(Java JUnit, Python unittest)

• Ensure code is testable by

using Test Driven

Development, patterns

(e.g. MVVM)

• Doubles as documentation:

tests demonstrate

expected behaviour

System Tests

• Test entire IBEX stack

• 2 test suites interacting

through different clients:

one via genie_python, one

via IBEX GUI

• GUI testing done using

Squish: Tool simulating

user input

• Automating tests massively

sped up release process

• Good for hunting tedious

bugs (race conditions,

memory leaks)

Screenshot of the IBEX Build Status Board Screenshot of the IBEX Build Status Board Screenshot of the IBEX Build Status Board

The IOC Test Framework

Creating device drivers (IOCs) is

a large part of what our group

does. Hardware is often not

available for testing, but errors

in driver could lead to lost

beam time.

Solution: Framework that tests

drivers against device

emulators (Python based)

We mostly use emulators

written with LeWIS python

package (but no dependency)

• Capable of simulating

complex stateful devices

• Provides backdoor to device

emulator for simulating

external events

Example Test: temperature

sensor disconnected stop

ramping

1. Start and

initialise

emulator

and IOC

2. Tell IOC to

start ramping

3. Assert emulator state is

“ramping”

4. Via backdoor, tell emulator

to act as if sensor is

disconnected

5. Assert both “not ramping”

Core IBEX Components

• IOCs: EPICS device drivers

• ICP: Special IOC, provides Neutron Data

• Block Server: Manages beamline configuration

• IBEX GUI: CS Studio based main Java client

• Genie_python: python scripting command

library

• Web Dashboard: Read-only web interface to

beamline status

This is a selection – IBEX has more components

