
Keith Ralphs, Joe Handford, Diamond Light Source, Harwell 
Science and Innovation Campus, Didcot, Oxon OX11 0DE

Future Architecture Investigations at 

Diamond

CURRENT SOFTWARE STACK LIMITATIONS
Diamond has a well-established stack of applications developed over many
years which provides users with Data Acquisition and Analysis functionality
from the Controls Hardware interface right up to the live and offline post
processing and visualisation of experimental data. However the stack has the
following limitations:
• Controls, Acquisition and Analysis layers tend to have been developed by

different teams, in some cases leading to hard boundaries of technological
and operational knowledge.

• Generic Data Acquisition (GDA) software has grown up organically over a
period of 15 years leading to bad structure and other forms of technical
debt making it hard to maintain and difficult to develop.

To support Diamond II, we want to review our software with a view to
designing a revised platform architecture to address these and other
problems and to take advantage of industry best practises and technologies.
Our goal is to:
• Repackage the existing proven functionality in a more flexible structure

behind a common platform API.
• Revise some existing implementations, adding new capabilities and

features along the way.
• Migrate to a stable consistent platform that is easier to maintain and

support.
• Move toward a solution that offers more flexibility to cross the old

boundaries to get to the information required by the user.

For more information please visit www.diamond.ac.uk or contact Keith Ralphs at keith.ralphs@diamond.ac.uk

Controls layer

Acquisition layer

Analysis layer

Data Acquisition Team

Data Analysis Team

Imaging Team

Controls Team

Controls Malcolm Team

APPROACH UNDER INVESTIGATION
Message based Micro-service Architecture has become ubiquitous in
the last decade and is designed to address the sort of problems
common in large monolithic applications like GDA. This pattern also
provides the capability to implement functionality in the language most
appropriate to the task and have it communicate with the rest of the
system. Due to its popularity the challenges for its adoption are very
well documented and there is a rich tooling ecosystem to integrate it
with the API layer already set up for security, containerization etc.

Adoption of a platform wide API using a single technology across the
old team functionality boundaries could allow navigation through
various layers to facilitate issue diagnosis. To do this the API would
need to support:
• Discoverability, i.e. the ability to interrogate the current returned

object to determine what lower level calls could be made.
• The ability to communicate using protocols already in use for

timing critical direct access to components like PandA and
Malcolm.

• Reactivity to allow Observer pattern style feedback to clients at
any level within the system minimising polling and simplifying
clients.

• Multiple language implementation so that specific functionality
could be implemented using the most suitable language without
affecting the client’s interaction with the API.

The task is to examine the frameworks and technologies that could
support this kind of design to select candidates for the various
functional blocks. We can then try to produce demonstrator(s) using
these technologies along with mock services that behave in similar
ways to the real components that would eventually be implemented.
This will allow us to discover the issues and test against the key
requirements for the architecture as well as examine the hoped for
benefits. Once this is done we should be in a position to decide
whether to commit to this approach.

CANDIDATE TECHNOLOGIES AND FRAMEWORKS
API

Due to our requirements of discoverability and reactivity ideally with WebSockets compatibility there are relatively 
few established technologies to choose from. Facebook’s GraphQL is a strong candidate though which has 
obviously been tested and debugged at scale in various languages and is well supported.

Gateway and Security Controller
Requirements for API hosting, Authentication and Authorisation are ubiquitous in Web based applications which we 
can take advantage of. This is true across several languages and many can provide Single Sign On support with 
little developer effort. Because most user interaction will take place at the Acquisition and Analysis level, a Java 
based solution is likely and Spring Cloud is a very strong contender in this area. It meets these requirements and is 
very well supported and documented. Despite this we will look for other contenders in both Java and Python.

Messaging Backbone
Many options are available here, Active MQ is already in use for similar purposes in Diamond and offers strong 
routing functionality. Also under consideration is Kafka which gives the ability to replay past messages in the event 
of a failure and is optimised for streaming which may be important at the Data Analysis level for post processing 
tasks. Both these and others are again well supported and debugged.

Reactivity
Both Python and Java have ReactiveX implementations that offer the required functionality.

 


