Timing, Synchronization and Software-Generated Beam Control at FRIB

Evan Daykin, Martin Konrad

Timing Architecture

Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

Introduction

- FRIB will require hundreds of devices throughout the linac to operate using synchronized timestamps and triggering events
- Accurate fault timestamps and time-dependent diagnostic measurements are accomplished with facility-wide fiber timing system
- Stable time is maintained using a GPS-disciplined 1pps Rubidium oscillator and distributed over the facility network via Network Time Protocol (NTP) and Precision Time Protocol (PTP)
- Complex and varying beam pulse patterns are accomplished using software-generated 'beam

• Grandmaster consists of commercial off-the-shelf GPS receiver with NTP/PTP capability and 1 PPS output

- Global Timing System (GTS) Master consists of Micro Research Finland CPU card and Event Generator
- Level 2 nodes distribute events to level 3 nodes; some directly connected to a few client devices
- Level 3 nodes connect exclusively to client devices in their operating area, transmitting events and timestamps
- Devices not capable of, or requiring fiber timing may synchronize their onboard clocks using older but widelysupported NTP, or less-supported and more accurate

Figure 1: FRIB timing network topology. Phase-sensitive diagnostic devices such as faraday cups utilize the high-precision fiber timing, while networked devices requiring less accuracy $(\sim 10 \ \mu s)$ use NTP or PTP, if supported.

code and timestamp arrays

PTP

Figure 2: A detailed schematic of the timing master synchronization design. The Rubidium oscillator and RF signal provide exact 1-second ticks and an 80.5 MHz event carrier signal in phase with the rest of the machine.

• Fan-outs broadcast fiber event stream to any number of clients

• Designed to be fail-safe: beam is guaranteed to turn off after 1 machine cycle if events stop transmitting for any reason

Performance

master	oiiset	-58	s2	ireq	-12319	path	delay	T3081
master	offset	-93	s2	freq	-12371	path	delay	13087
master	offset	245	s2	freq	-12061	path	delay	13087
master	offset	25	s2	freq	-12208	path	delay	13087
master	offset	48	s2	freq	-12177	path	delay	13087
master	offset	64	s2	freq	-12147	path	delay	13087
master	offset	-399	s2	freq	-12590	path	delay	13087
master	offset	388	s2	freq	-11923	path	delay	13087
master	offset	41	s2	freq	-12154	path	delay	13087
master	offset	-511	s2	freq	-12693	path	delay	13087
master	offset	-52	s2	freq	-12388	path	delay	13087
master	offset	-18	s2	freq	-12369	path	delay	13087
master	offset	374	s2	freq	-11983	path	delay	13087
master	offset	108	s2	freq	-12137	path	delay	13087
master	offset	-287	s2	freq	-12499	path	delay	13087
master	offset	35	s2	freq	-12263	path	delay	13087

Figure 4: Excerpt of PTP logging on a test machine with hardware timestamping support. Timestamping error from master is shown after 'master offset' in nanoseconds. In a 1-minute sample from this time frame, the machine reported a mean error of 2.43 ns, with a standard deviation of 232.6 ns.

Oscillator Status					
10MHz Error	-11				
Rb Ref Strength	835				
Input PPS Delta	2 ns				

Figure 5: Rubidium oscillator statistics (Error in Hz)

10.000 msec SoC Min 10.000 msec SoC Max Tics Per Second 80500000

Figure 6: Diagnostic EVR receiving 10.000 ms machine cycles and 80.5MHz event carrier

• Sub-µs network timestamping accuracy achieved between PTPaware PHYs, even if network equipment is not PTP-aware

• Fiber timing provides machine cycles at exactly 100 Hz, with 80.5MHz event clock required by diagnostics equipment

• 400+ devices currently utilizing fiber event link

Challenges

- Central timing master results in single failure point redundancy greatly increases cost
- In practice, 100Hz machine cycle rate aliases out 5th harmonic of 60Hz line noise, making it impossible to filter from diagnostic measurement
- Fiber hardware tends to be more delicate than fiber have lost connections to single client devices
- Our fiber distribution chassis power supplies are prone to getting very hot and failing prematurely; however, they are inexpensive and redundant
- Not all network hardware is PTP-aware, this precludes some nicer features of PTP such as peerto-peer delay negotiation
- Not all PTP-capable hardware supports attaching timestamps on PHY; software timestamping reduces accuracy from <1 μ s to <100 μ s offset

Hardware Diagram

Figure 7: Timing master hardware. 1) GPS/PTP/NTP grandmaster, 2) 1 PPS/10MHz Rb oscillator, 3) cPCI CPU card running real-time Linux kernel, 4) Master event generator with 1 PPS and 80.5MHz inputs, 5) Fan-out distribution to facility; yellow cables are 10Gb/s singlemode fiber, cyan cables are 1Gb/s multi-mode.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.