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Abstract

Continuous integration is widespread in software devel-

opment, but a number of factors have thus far limited its use

in Programmable Logic Controller (PLC) application devel-

opment. A key requirement of continuous integration is that

build and test stages must be automated. Automation of the

build stage can be difficult for PLC developers, as building

is typically performed with proprietary engineering tools.

This has been solved by developing command line utilities

which use the APIs of these tools. Another issue is that the

program must be deployed to a real target (PLC) in order to

test, something that is typically easier to do in other types

of software development, where virtual environments may

easily be used. This is solved by expanding the command

line utilities to allow fully automated deployment of the PLC

program. Finally, testing the PLC program presents its own

challenges, as it is typically undesirable to alter the program

in order to implement the tests natively in the PLC. This is

avoided by using an industry standard protocol (OPC-UA)

to access PLC variables for testing purposes, allowing tests

to be performed on an unaltered program.

INTRODUCTION

Continuous Integration (CI) attempts to ensure the consis-

tency of a project, by regularly and automatically integrating

work from multiple developers into a single shared main

version. Essentially its goal is to detect breaking changes

as early as possible, by automatically running a set of tests

when code changes are made. This process is commonly

split into three automated stages, namely project build, de-

ploy and test. Tests should be carefully designed, making

sure the correctness of a software application is kept as new

features are added.

Programmable Logic Controllers (PLCs) are the most

common means of implementing industrial control systems.

Such control system applications are often large and com-

plex, and their specifications and requirements may change

during their development or operation. For these reasons,

it would be desirable to employ CI tools when developing

these applications. However, automating the building, de-

ployment and testing of PLC applications is a non-trivial

endeavour. The main reasons for this include:

• Program compilation and deployment is typically done

in proprietary engineering tools, which often do not

support easy automation of these tasks;

• Having to resort to a physical PLC as a test target, as

accurate and feature-complete simulators are not always

available;
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• The need to significantly modify the target test project,

as normally it is required to add auxiliary interfaces to

allow testing.

Previous attempts to implement a PLC testing environ-

ment have resorted to using the Supervisory Control And

Data Acquisition (SCADA) stack to exchange data with

PLCs. However, this approach is not without its problems.

Firstly, many internal variables often cannot be accessed via

the SCADA interface, making it difficult to interact with the

PLC program. Furthermore, relying on SCADA for testing

the PLC program introduces a dependency on the commu-

nication protocol between them.

Rather than using a real PLC one could turn to simula-

tion software, which can even provide additional desirable

features. For instance, SIMATIC PLCSim Advanced is a

simulator for Siemens S7-1500 PLCs which supports fine-

grained cycle by cycle execution and breakpoints. However,

each simulator and its set of engineering tools is specific to

a model or set of PLC models and thus require considerable

effort to integrate into a testing suite directly.

Other methods seek to translate the native PLC code to

widespread languages such as Java or C [1] which run on x86

architectures and have support for step-by-step debugging.

We propose a novel workflow that allows us to write tests

for generic PLC-based systems which removes the depen-

dence on a SCADA stack and requires minimal changes to

the program under test. The tests description should be read-

able yet powerful and able to describe high-level behaviour

concisely. To achieve this we implement a Python frame-

work and a proof of concept test suite. The communications

interface employs OPC Unified Architecture (OPC-UA) [2],

which provides read and write access to any symbol-mapped

variable in the PLC memory during runtime. OPC-UA is

an open communication protocol for industrial automation

which supports multi-platform communication stacks. The

automation of the build and deployment phases of the CI

pipeline for the PLC are carried out by developing tools

which leverage the Application Programming Interfaces

(APIs) of the engineering tools provided by PLC manufac-

turers.

As long as a test PLC can communicate with an OPC-UA

server, we can interact with it via a client running on virtually

any platform, written in whichever programming language

fits the software stack employed by the testing framework.

What is more, we conceive that by providing a single test

description that uses such an OPC-UA client, we can run

tests on any PLC – provided smaller structural differences in

the interface exposed by OPC-UA are taken in consideration.
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UNICOS

At CERN, the UNified Industrial COntrol System

(UNICOS) [3] framework has been developed in order to fa-

cilitate the implementation of industrial control applications

which span mainly the control and supervision layers. It

provides developers with a hierarchy of process automation

objects, ranging from low-level I/O, to physical devices, to

high-level control abstractions. UNICOS aims to abstract

away from the underlying implementation required for a

specific PLC model, and automate the creation of both PLC

projects as well as SCADA monitoring interfaces from a

given control system specification. Our work tries to ex-

tend this approach to automatic testing of the generated

PLC projects at the level of the process objects defined in

UNICOS, and incorporate it in a continuous integration

pipeline.

UNICOS is composed of several components employed

in different accelerator systems. We direct our attention to

UNICOS Continuous Process Control (UCPC) [4], which

provides a methodology for creating a specification file, in

which the UNICOS objects are defined. From this file, we

can automatically produce the instance and logic code for

the PLC, as well as compile the resulting program. The

main advantage of employing automation tools from UCPC

include faster development, configuration and commission-

ing. In addition, using a common set of abstract process

automation objects provides consistency of operation across

applications.

There are two main motivating factors for developing a

CI system for UNICOS-based control systems. Firstly, since

the engineering of applications is performed using UNICOS

objects, it is also natural that tests should be written at the

level of these objects. Secondly, the UNICOS framework

itself is written and maintained by CERN, so a CI pipeline

which ensures that framework changes do not alter the be-

haviour of the objects or applications is crucial. Even though

this work focuses on UCPC, the testing methodology based

on OPC-UA is generic, and can easily be generalised to

non-UNICOS PLC applications.

PLC TESTING

OPC-UA provides access to variables in the PLC mem-

ory, during program execution. Essentially, a client is shown

a tree representation with the variables of a PLC program

and their respective symbolic names. The structure of this

tree varies slightly across different PLC types (e.g. Siemens

S7-300/400/1500 or Schneider). Some of these changes are

due to OPC-UA server to which they connect, others are

due to implementation details of the UNICOS framework.

For instance, inputs and outputs are split in an additional

hierarchic level per each UNICOS object in S7-1500, com-

paring to S7-300/400. However, these differences can easily

be accounted for, and we can thus envision a unique test for

a given UNICOS application specification, independent of

the underlying PLC type or low-level implementation. An

additional advantage of using the OPC-UA interface is that it

S7-300/400

PLC

S7-1500

PLC

OPC-UA Server

OPC-UA Server py-plc-test

Test SuiteSIMATIC NET

Python venv

py-plc-test

Test Suite

Python venv

Virtual Machine Pool 

Test PLC Pool

Ethernet OPC-UA

OPC-UA

Figure 1: Testing architecture, with external (S7-300/400)

and onboard (S7-1500) OPC-UA servers.

allows us to interact with PLC variables with minimal intru-

sion in the program (typically the only modification required

is to disable the periphery addressing, to allow the input vari-

ables to be written by OPC-UA without being overwritten

by the PLC scan).

In order to fulfil these requirements we created a Python

package which we named py-plc-test. Python was cho-

sen due to its readability and flexibility, which translates in

ease of creation and improved maintainability of tests. This

novel framework is intended to be used as a dependency and

does not itself implement any test-related classes or busi-

ness logic. It abstracts from the structural differences in

the OPC-UA tree exposed by different servers, by having a

predefined mapping for each of the supported server types.

We use the OPC-UA client API from open source LGPL

Pure Python OPC-UA1 package. Note that OPC-UA is asyn-

chronous w.r.t the PLC cycle time, i.e no effort is made to

synchronise reading from and writing to communication

buffers at a particular part of the CPU cycle. However, the

Python client ensures each operation has been communi-

cated with the server. So far we have demonstrated our

method using Siemens S7-1500 PLCs, which have an on-

board OPC-UA server, and S7-300 which can connect to a

SIMATIC NET OPC-UA server in a separate workstation,

via Ethernet.

Figure 1 shows a schematic representation of the testing

architecture. PLCs are physically located in a test laboratory,

whereas the test runners and external OPC-UA servers are

run in openstack2 virtual machines.

UNICOS Abstraction Layer

By incorporating domain-specific features in our testing

framework we can write simpler, concise and overall more

readable and maintainable tests. Rather than accessing mem-

ory values by symbol names, we provide a higher layer of

abstraction, at the UNICOS object level. Essentially, we

allow users to refer to high-level objects, each type corre-

sponding to its own Python class. Therefore, we can map a

1 python-opcua GitHub repository as of October 9, 2019
2 openstack webpage, as of October 9, 2019
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Table 1: High-level Command for UNICOS Field Object with Operational Modes

High-level Internal implementation Low-level value changes

valve.set_mode("manual")

valve.set_attribute("AuIhMMo", False) VALVE.AuIhMMo = False

valve.reset_register("ManReg01") VALVE.ManReg01 = b0000 0000

valve.set_attribute("ManReg01.MMoR") VALVE.ManReg01 = b0000 0010

set of OPC-UA nodes to a Python class, and provide meth-

ods to perform more complex operations. Table 1 shows

a simple example of a high-level command for a UNICOS

field object (e.g. valve) with operational modes.

This UNICOS layer was built with the fail-fast principle

in mind. As soon as an inconsistency is detected a specific

error should be presented to the user so that the underlying

problem can be quickly detected and resolved. For instance,

it is trivial to detect a change that accidentally breaks a par-

ticular field in an object, by renaming it or changing its data

type. We wrote unit tests for the framework itself, to ensure

it is consistent with the latest specification of UNICOS.

CONTINUOUS INTEGRATION PIPELINE

We propose a new method for continuous integration

of PLC projects, resorting to GitLab CI pipelines. Our

pipelines consist of three stages, namely:

1. Logic and instance generation;

2. PLC project generation;

3. Deploy and test.

The stages are executed sequentially, but not necessar-

ily performed by the same worker, as long as the required

artefacts from previous stages are passed down the pipeline.

Presently, we assume that each worker machine is connected

to a single test PLC. This assumption allows us to leverage

the default job scheduling of GitLab runners. Concretely,

we wish to avoid situations where a test suite is running for a

given PLC, and another runner is somehow able to download

a new program onto it, thus breaking the tests.

Logic and Instance Generation

The project generation is handled by UNICOS Applica-

tion Builder (UAB) [4]. This tool is responsible for creating

the code for the PLC program, by using the information of

the UNICOS objects and the process knowledge, stated in

the project specification file. UAB can easily be configured

to automatically perform build tasks through Maven3. These

include the instance, logic and project generator plugins for

each of the supported PLC types. The instance and logic

generator plugins automatically produce a set of PLC source

files (structured text), describing the UCPC object instances,

the symbol table with respective address mapping and the

application-specific control logic.

Whereas the creation of PLC source files can be per-

formed solely by UAB, the compilation of these sources

3 Apache Maven, as of October 9, 2019

into the resulting PLC program must generally be done us-

ing the respective proprietary engineering tools.

We also use Maven to generate the files required for

importing the objects’ information to the SCADA project.

Specifically, the SCADA system we employ is WinCC OA4.

PLC Project Generation and Deployment

In our work, we focused on supporting Siemens S7-

300/400 and S7-1500 series PLCs, as they are widely used

in CERN’s control systems, and both currently provide a

reliable solution for OPC-UA communication. The engineer-

ing tools for S7-300/400 and S7-1500 PLCs are respectively

SIMATIC STEP 7 and TIA (Totally Integrated Automation)

Portal.

SIMATIC STEP 7 STEP 7 provides Visual Basic and

C# APIs which can be used to create and edit projects. We

build on previous efforts to automate STEP 7 project build-

ing [5] and add features that allow us to compile and down-

load programs to their respective stations. Both the test

PLC and the machine running the SIMATIC NET OPC-UA

server it connects to are stations. This machine is not re-

quired to coincide with the one that handles the compilation

steps.

TIA Portal The process of building a TIA Portal project

through UAB uses mostly TIA Openness Scripter, as an al-

ternative to the C# TIA Openness API. This choice was

mostly propelled by the development cycle of TIA Portal,

which resulted in frequent and numerous API changes. How-

ever, at the time of writing it was not possible to download

a program to a PLC using the scripter. As a result, a small

custom tool command-line tool was written which uses the

C# API to enable downloading to a PLC.

Deploy and Test

Once the PLC project has been compiled it is then auto-

matically deployed to an available testing target. We merge

the deploy and test jobs in order to ensure the test suite is

configured to target the correct test PLC. The network con-

nections can be configured at the build stage and its details

passed down the pipeline as artefacts. Alternatively, the

configuration can be performed immediately prior to deploy-

ing to the test PLC, by resorting to the engineering tools’

respective in-house command-line utilities.

Our current solution pre-configures the network interfaces

in a base project, of which there is one per runner machine.

The base project contains a PLC with a specific network

4 WinCC OA webpage, as of October 9, 2019
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configuration to which we import the sources generated

by UAB. In the case of STEP 7 projects, the SIMATIC

NET OPC-UA server and its connection to the PLC is also

configured in this base project.

We propose that tests are written in an imperative fashion,

setting input values or trigger high-level commands, wait

for the changes to propagate and then evaluating a set of

outputs. Our framework is built to support this methodology.

Even though OPC-UA supports asynchronous programming

paradigms, we have yet to develop tests involving subscrip-

tions to value changes.

Single Test Description We suggest a simple paradigm

for developing test suites which can easily be extended to

support different PLC types, without having to rewrite test

business logic. Each set of tests has a corresponding test

case class. Each concrete test case inherits from a generic

test base class. We write the body of the test assuming a

generic PLC object, and use it to obtain UNICOS objects by

their name. One can then operate on these instances, and the

changes are communicated to the real PLC via OPC-UA.

We create a class per each of the PLC types supported in

our framework, which overload the default test case setUp

and tearDown methods. By exploiting multiple inheritance

in Python we can then associate a concrete test case with each

of the supported PLC types, thus avoiding code duplication.

These subclasses have access to the core logic, inherited from

the concrete test, and the required methods to communicate

with the desired PLC from the helper class.

Figure 2 shows the respective class diagram.

Test

ConcreteTest

TestTIA TestS7

ConcreteTestTIA ConcreteTestS7

Figure 2: Class diagram for suggested test suite architecture.

UNICOS FIELD OBJECTS TEST

We applied our new method and software tools to a set of

existing tests, meant to verify the correct behaviour of so-

called UNICOS field objects. These include devices for rep-

resenting process equipment driven by a digital and/or ana-

logue signals such as pneumatic valves and control heaters.

The existing tests required multiple instances for each of

the framework objects with different configurations [6] so

as to mimic the behaviour of devices corresponding to real

instruments, namely valves, motors and pumps. This limi-

tation was due to the impossibility of changing an object’s

configuration at runtime through the SCADA. Additionally,

the tests needed many additional devices to be created in

order to excite the inputs and evaluate the outputs of the

objects under test. Contrastingly, our approach allows us to

test each object in isolation.

The tests were initially defined in a spreadsheet, which

specified the sequence of steps (i.e. input changes) and the

respective set of expected outputs per object. A code gener-

ator would extract the test description from the spreadsheet

and automatically produce the test scripts, which operate on

the SCADA stack.

Due to the auto-generated nature of the resulting test

code, the output is compact but unintuitive. The original

spreadsheet specification is not descriptive of each of the

behaviours we intend to test, as it specifies long sequences of

steps which are expected to produce different results depend-

ing on the possible object configurations. As a result, the

purpose of the test, i.e. the expected behaviour of an object

in a given situation is not evident and lost in the test descrip-

tion. This essentially makes the tests hard to understand,

and even harder to update and maintain over time.

OPC-UA gives us direct access to every object input and

output, as well as the configurable parameters, allowing us

to reconfigure a single instance per object type according to

each specific test. Because of this, our approach is able to

greatly reduce the total number of required UNICOS object

instances in the project.

We implemented these tests in Python, resorting to our

novel framework. We follow the methodology provided in

the previous section. It allows us to create a single test de-

scription and produce test classes that support both Step 7

and TIA Portal projects, requiring no modification to the

concrete test logic. Perhaps the major improvement over

the previous description is that it is self-contained, contrast-

ing with the previous implementation; to fully understand

a test one would have to first be familiar with the project

specification file, as it describes the configuration of each

test object instance, then the testing routines themselves and

finally parse the matrix of expected values, for each step of

the routines, specified in yet another spreadsheet. Listing 1

features part of a test for a specific UNICOS object type.

We then integrated these tests in an end-to-end pipeline,

for both STEP 7 and TIA Portal, from UCPC project speci-

fication file to unit test results. Essentially, we automatically

trigger the generation of the PLC project, deploy it to target

S7-300 and S7-1500 PLCs and run the Python test suite.

Assumptions and Limitations

Presently, we assume that each runner machine has its

dedicated PLC to prevent destructive operations. This al-

lowed us to leverage the out-of-the-box scheduling features

of GitLab CI instead of writing our own scheduler. However,

this may pose an obstacle to scalability in the future.

Furthermore, we had to patch the logic generator template

libraries of UAB due to implementation details. Essentially,

the UNICOS objects are never supposed to be completely

detached from I/O objects, and if no connection is defined in

the specification file, the default behaviour is to hard code a
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def test_orders_fs_off(self):

"""ORDERS - AnaDO with FailSafe Off"""

anado = self.plc.get_anado(TARGET_ANADO)

anado.configure(fs_pos_on=False, ...)

self.set_mode_assert(anado, "manual")

anado.set_status(False)

anado.set_input_request(0.0)

sleep(OUTPUT_DELAY)

self.assertEqual(False,

anado.get_attribute("OutOnOV"))

self.assertEqual(0.0,

anado.get_attribute("OutOV"))

...

Listing 1: Example test for AnaDO object from refactored

UNICOS field objects tests.

constant value that is assigned at each cycle. This renders our

attempts to change these variables via OPC-UA pointless, as

the value is immediately overwritten by its default value. We

were therefore required to work with our slightly modified

version of UAB.

CONCLUSION

In this work, we present an alternative approach to PLC

testing which relies on OPC-UA, thus removing the need for

the SCADA stack. Concretely, we develop a novel frame-

work which we use in a refactored version of existing tests

for UNICOS objects. These tests were specified in a rigid

fashion, which made them harder to modify and maintain.

Moreover, they required adding many helper devices which

greatly increased the complexity of the testing project. Our

solution allows us to write a simple but powerful test de-

scription at a high-level abstraction layer, decoupling the

implementation from the type of PLC under test.

Our contributions can be summarised as follows

1. A Python package which allows us to communicate

with a real PLC via OPC-UA and benefit from a

UNICOS abstraction layer, i.e. aggregate a set of scat-

tered OPC-UA nodes and treat them as a high-level

UNICOS object;

2. A unified description of tests for UNICOS field ob-

jects, which supports both STEP 7 and TIA Portal PLC

projects;

3. GitLab CI pipelines to automatically build and test the

PLC project for both STEP 7 and TIA Portal projects.

These required creating utilities that use the proprietary

tools’ API, mostly for deploying the programs to the

testing PLCs.

Future Work

We predict a vast number of possible use-cases for this

testing methodology and recognise room for improvement

in our implementation. Firstly, we should experiment with

non-UNICOS projects, and improve our tool by including

high-level features for generic PLC projects.

We have assumed our tests can be made of simple set,

wait and assert routines. In the future we might benefit from

implementing support for asynchronous communication, al-

lowing for subscriptions to OPC-UA node value changes.

This could eliminate the need for explicit waiting periods in

our tests.

Regarding the pipeline, we may be able to perform the

network configuration of a project in the last stage, right be-

fore deployment. This would increase the process’ flexibility

by reducing our dependency on manually-configured base

projects. Additionally, we could optimise resource manage-

ment, by writing our custom scheduler for coordinating the

deployment and test stage. For instance, we could move

the testing to a Linux machine with a Python installation,

freeing a worker machine to build PLC projects.

Concerning CERN-specific use-cases, we highlight the

possibility to test other components of UCPC by designing

a set of test projects, such as the one implemented in this

work. For instance, updates to the UCPC resource package

could trigger a pipeline to run on each of the test project

repositories, and be conditioned on whether they are suc-

cessful or not. We have built a prototype for this use-case,

by mimicking multi-project pipelines through the usage of

GitLab remote pipeline triggers.
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