

WALTZ – A PLATFROM FOR TANGO CONTROLS WEB APPLICATIONS
I. Khokhriakov†, F. Wilde, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

O. Merkulova, IK company, Moscow, Russia

Abstract
The idea of creating Tango Controls web platform was

born at Tango Users Meeting in 2013, later a feature re-
quest was defined aka v10 roadmap FR6 – to provide a ge-
neric web application for browsing and monitoring Tango
Controls devices. The work started in 2017. Name “Waltz”
was selected by voting at 32nd Tango Users Meeting, Pra-
gue, Czech Republic in 2018. Waltz is the result of joint
efforts of Tango Community, Helmholtz-Zentrum Geest-
hacht and IK company.

This paper gives an overview of Waltz as a platform for
Tango Controls web applications, the overall framework
architecture and presents an end result of real-life applica-
tions used in HZG. The work shows that having Waltz plat-
form web developer can intuitively and quickly create full
web application for his/her needs. Different architectural
layers provide maintainability. The platform has a number
of abstractions and ready-to-use widgets that can be used
by web developer to quickly produce web based solutions.
Among Waltz features are user context saving, device con-
trol and monitoring, plot and drag-n-drop interface solu-
tions. Communication with Tango Controls happens via
Tango REST API using HTTP/2.0 and Server-Sent Events.
Waltz can be also treated as a system for device monitoring
and control from any part of the world.

INTRODUCTION
Waltz is a general purpose Tango Controls web applica-

tion that provides the interface between the Tango Control
system and the scientific users who define and calibrate
their experiments. It can also be used for live monitoring
of a big scientific installations like ESRF or DESY.

Initially, the idea of Waltz (ex. TangoWebapp) was born
at the 29th Tango Users Meeting, Krakow, Poland in 2015
[1]. It was marked as Feature Request #6 within future
Tango Controls evolution road-map [2-3]. Final project
name “Waltz” was chosen by the community at the 32nd
Tango Users Meeting, Prague, Czech Republic in 2018.

Waltz was designed to be used in two ways – as a plat-
form and as an end-user application. In this article we are
going to describe Waltz as a platform for Tango Controls
web applications and will to list some of the features from
the end-user application to show to possibilities of the plat-
form.

WALTZ AS A DEVELOPMENT
PLATFORM

Waltz considered as a platform that can be used to im-
plement integrated and coherent web based GUIs for Tango
Controls [4].

Waltz’s flexibility is achieved by a layered architecture:
internal event bus (e.g., OpenAjax [5]) and widgets
(e.g., UI components) which can be used as building blocks
for rich functionality.

Waltz offers developers a number of compact APIs:
tango device model API; reusable functional components
(e.g., mixins); UI builder API. These will be covered in
more details later in this section.

Integration with SVG files [6] allows to implement ex-
tremely user-friendly widgets.

Subscriptions allow Waltz to use Server-Sent Events
[7-8] to receive notifications about native Tango events
with minimal overhead.

Since v0.7 [9] Waltz fully supports JS6 [10] features. So
developers are able to use cutting edge features of modern
JavaScript to implement required widgets.

Layered Architecture

Figure 1: Waltz architecture layers.

The platform has 3 layers (from bottom to top):
transport; models; UI (Fig. 1). Lower layers don’t know
anything about layer(s) on top and they send events via
OpenAjax hub. Higher layers talk to the lower ones via API
calls.

The Waltz platform is divided into API and UI parts.
Platform UI is implemented following the concept of smart
components – rich components build on top of used in the
platform JS framework components (Webix components)
[11]. Each UI component is completely standalone and can
be used as a building block for more complex widgets or
even dedicated applications. Using UI/non-UI components
developer creates new UI components for specific use
cases. Platform APIs is conceived for building UI, errors
handling, interacting with Tango device model, etc (Fig. 2).

Another perspective of the layered architecture of Waltz
is shown in Fig. 2. Different UI/non-UI components com-
municate with each other via OpenAjax event bus which is
a part of JavaScriptMVC framework [12]. Non-UI compo-
nents or API components are responsible for common
functionality of the platform, e.g., storing user context data.

† igor.khokhriakov@hzg.de

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

User Interfaces, User Perspective, and User Experience(UX)
WESH3003

1519

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: The platform offers a number of UI/non-UI APIs.
This figure also shows external dependencies.

Components and Connectors
In this section we will observe how Waltz is

implemented from Components and Connectors view of
software architecture.

There are three main groups of components: UI (e.g.,
widgets), State/Context components and backend related
components (Fig. 3).

Figure 3: Waltz Components and Connectors diagram.

Backend related components communicate with backend
services such as UserContext, Terminal emulator or Tango
REST API server. State/Context components are responsi-
ble for holding the current state of the different entities,
such as Tango Attribute info or Tango Command output
etc. UI components are to represent distinct UI elements.
They use direct calls to communicate with State/Context

components to perform actions. These actions in their turn
may affect state/context. UI components listen to state/con-
text change events via event bus. New states are published
via event bus (Fig. 4).

Figure 4: Result of the user’s interaction with Widget X is
propagated to other widgets via event bus.

Waltz Platform APIs
Waltz comes with a wide range of APIs. Here we present

an overview of the most common APIs and those which
make Waltz being a platform.

UI Builder API. This API is used to develop Waltz
application UI layout, see Fig. 5. Using this API developer
may define which widgets and content will be available in
which panels/ views. To show the simplicity of
development a part of client code of this API is below:

function buildUI(platform_api) {

const ui_builder = platform_api.ui_builder;

ui_builder.add_left_sidebar_item({“header”:
 “<span.../> Devices” ...});

ui_builder.add_left_sidebar_item(

TangoWebapp.ui.newDeviceTree
(platform_api.context));

ui_builder.add_mainview_item({“header”:
“<span.../> Dashboard” ...});

… }

PlatformContext, UserContext, Mixins etc. Waltz

platform APIs offer a number of convenience and utility
functions. For example, a single entry point to the applica-
tion’s state – PlatformContext has references to application
data and the UserContext API. UserContext API allows de-
velopers to store user specific data from a widget (i.e. set-
tings). Mixin [13] is a way to enrich JS object’s functional-
ity by using common functions. The platform provides a
number of useful mixins such as Stateful (which allows a
widget to persist its state), OpenAjaxListener (which al-
lows widgets to subscribe to the event bus). More details
and functions can be found in the project’s documentation
[14], also in [15].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

WESH3003
1520

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 5: Waltz UI layout: 1 – top toolbar; 2 – bottom toolbar; 3 – left side panel; 4 – right side panel; 5 – main view.

Tango Device Model API is an abstraction of the Tango
device model on top of the Tango REST API. It provides a
high level client API familiar to Tango developers. Being a
JavaScript API, it is based on Promise API [16], hence, al-
lowing a convenient modern JavaScript way of program-
ming. Using JavaScript 6 async/await [17] the client code
becomes straightforward and clean. Here is an example of
the Waltz platform Tango Device Model API in action:

const host = await
PlatformContext.rest.fetchHost
(‘localhost:10000’);

const device = await host.fetchDe-
vice(‘sys/tg_test/1’);

const attr = await device.fetchAttr(‘ampli’);

const response = await attr.write(Math.ran-
dom());

return response.value;

Widget API allows developers to either create new
widgets from scratch or re-use existing ones. Widget API
is based on webix protoUI [18], thus being its extension. A
code example of a widget definition is shown below:

const stateful_attrs_monitor = webix.protoUI
({“name”: ‘stateful_attrs_monitor’...},

TangoWebappPlatform.mixin.Stateful,
attrs_monitor_view);

A widget’s functionality may be enriched using Waltz
platform mixins. PlatformContext API is accessible from
Waltz widgets.

DEPLOYMENT
Waltz is distributed as a standard Java Web Application

Archive - .war file [19]. Therefore it can be deployed at any

Java EE compliant application server. Apache Tomcat 9
server [20] is used as Waltz’s production environment at
DESY as it is very flexible in terms of security configura-
tion and provides other useful features e.g., HTTP/2.0.

Standard components like .war files and Java EE com-
pliant application servers enable implementation on a
standard enterprise infrastructure which scales very well.
For instance, it is possible to deploy several Waltz in-
stances behind a load balancer [21], thus allowing for an
enormous number of simultaneous users. It is also possible
to deploy several instances of Waltz under different names
at the same time or to deploy a Waltz instance from a spe-
cific branch for a specific beamline.

REAL LIFE EXAMPLES
Waltz itself is a powerful tool that can be used by end-

users to operate Tango Controls based environments. In
this section we will show real life Waltz features based on
the components described in the section above and taken
from release v0.7.3 [9].

Waltz leverages web applications principles making the
whole application user specific. Therefore, users first must
login into Waltz. This also allows secure deployments of
Waltz e.g., at DESY Waltz is integrated with DESY internal
security system.

After log in to the version v0.7.3 of Waltz users can see
an application consisting of 5 parts (Fig. 5).

Toolbars
Toolbars provide some utility widgets: top toolbar –

links to the documentation, scripting console, terminal, set-
tings bar and sign out button; bottom toolbar – application
logs, current Tango REST API request status and “report
an issue” link.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

User Interfaces, User Perspective, and User Experience(UX)
WESH3003

1521

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Side Panels
Side panels are connected with application’s

management. The right side panel shows a user actions log.
The left side panel consists of the following parts:

Tango hosts tree. This widget can show several Tango
Controls hosts at once. It also features a filter for quick
search of required Tango device.

Tango device control panel. It shows attributes,
commands and pipes of a particular Tango device selected
in Tango hosts tree. Three small control widgets provide
attributes read/write/plot functionality; commands
execution and pipes reading. This widget features clever
filter where user can simultaneously search through
attributes, commands and pipes or only one of them, e.g.,
“a:double” in the search field will search for an attribute
that contains “double”.

Information/properties panels. Tango Controls host,
device, attribute, command, pipe information and
properties can be found here. It is possible to change
properties from this widget.

Main View
Main view consists of dynamic tabs. Tabs may be of any

complexity varying from simple iframe [22] to a rich
embedded applications integrated with other frameworks
e.g. React, Angular etc [23]. Some of them are listed in this
section.

Dashboard. This widget allows users to create different
profiles. Each profile can be of type “table” or “plot”. A
user configures each profile by drag-n-drop’ing Tango at-
tributes into Dashboard. Its configuration is persistent per
user basis (Fig. 6).

Figure 6: Dashboard widget.

Tango device configuration/monitoring. The whole
Tango device can be reconfigured/monitored via this
widget, e.g., you can set properties, define attribute
alarm/warning ranges, set polling, view all attribute values
etc.

Tango hosts manager. Having this widget user can
monitor the state of the remote Tango hosts as well as re-
start particular remote Tango servers, navigate through
Tango server’s devices etc. Statuses of Tango servers are
updated using native Tango event system exported via
Server-Sent Events [7].

Tango attribute/command/pipe view. Main view of
Tango attributes differs depending on the attribute’s type.
For scalars – it is a streaming plot view, for spectrum – plot
and for images – heatmap (Fig. 7).

Figure 7: a – Tango scalar attribute main view; b – Tango
image attribute main view; c – Tango command main view;
d – Tango pipe main view.

In attribute view users can write and plot any attribute
value and continuously update it. Command view allows
users to execute Tango commands including those which
require an argument. This command view also shows the
history of the command execution. Pipe view displays
Tango pipe value highlighted as JSON.

Figure 8: Terminal widget.

Teminal. It displays remote Linux terminal session. This
widget provides fully functional remote Linux session so

users may ssh to any Linux machine and perform required
operations there. In Fig. 8 user executes htop program.

User settings. Here users can specify Tango REST API
url, add/remove Tango hosts to the Tango hosts tree widget,
define device filters and add new Tango devices to the
Tango host. The device filter in this widget differs from
other filters, e.g., device filter affects devices which will be
actually loaded by Waltz, rather than filter in Tango hosts
tree where widget performs on-fly filtering.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

WESH3003
1522

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

FURTHER DEVELOPMENTS
Waltz is already a production-ready development plat-

form. Nonetheless, many new features and improvements
are already on the raodmap.

We want to make the server-side of the application a rich
application. That will allow integration with other control
systems or even direct hardware communication. From the
client perspective the platform will provide a well-defined
API and communication protocol based on the reactive
manifesto [24].

Also it is planned to improve SVG integration which will
allow to define the visibility for particular layers as well as
provide a real time feedback to users from upstream hard-
ware by, for instance, displaying Tango device attribute
values and updating them in real time either using client
polling and/or the Tango event system.

User roles will be introduced. Users with an expert role
will be able to create views using drag-n-drop visual con-
structors as well as simple macros.

Scripting capabilities will be extended with visual editor
as well as integration with other scripting platforms e.g.,
Sardana integration [25] is planned.

A dedicated version of views for mobile devices will be
added.

CONCLUSIONS
In this paper we have given an overview of Waltz as a

platform for Tango Controls web/mobile applications de-
velopment. Namely, we have covered a number of APIs,
deployment and UI widgets that exist in Waltz.

In the previous sections we have looked at Waltz from
different perspectives of what this platform offers to a de-
veloper: different views of architecture, APIs, deployment
and how it can be implemented using real life examples.

It is clear that implementing features of enterprise web
applications greatly improves user experience with
SCADA systems. Among these features are: integrated UI;
storing per-user basis data; deploying multiple instances of
the application with specific for each use case widgets;
having multiple views based on user role etc.

As per July 2019 when this paper was written about only
9 man/month efforts within 2 years were invested into
Waltz [26]. We believe that in this limited time Waltz has
become a very powerful and rich platform for development
of custom Tango Controls web/mobile applications with
great potential. Waltz has been in use for beamline com-
missioning at DESY for several months in which it proved
to be mature and stable enough to replace other Tango Con-
trol software.

A number of workshops were organized to spread the
knowledge on how Tango developers may use Waltz plat-
form [15, 27-29] as well as a number of presentations were
made to demonstrate Waltz as a product for end-users
[30-32].

It is planned to evolve Waltz and make it more powerful
in terms of end-user application (visual scripting editors,
SVGs) and in terms of developer’s platform. We foresee

further developments to integrate other control systems
into Waltz and to implement a direct hardware communi-
cation.

ACKNOWLEDGMENTS
The authors would like to thank Andrew Götz, Jean-

Michel Chaize from ESRF and Tango Collaboration for be-
lieving in Waltz and funding 3 man/month of the Waltz
platform development in 2018.

Developers team gives special thanks to Fabian Wilde
and Vadim Murzin for their patience in testing Waltz and
providing very useful feedbacks.

We thank: HZG and DESY colleagues, Christina Kry-
wka, Jorg Hammel, Felix Beckmann for their support;

DESY, Solaris and ESRF which hosted several Waltz
workshops;

Webix team for brilliant library that empowers Waltz
greatly and for supporting open source projects.

REFERENCES
[1] A.Götz et. al., “The TANGO Controls Collaboration in

2015”, in Proc. 15th International Conference on Accelera-
tor and Large Experimental Physics Control Systems
(ICALEPCS’15), Melbourne, Australia, Oct. 2015, pp. 585-
588. doi:10.18429/JACoW-ICALEPCS2015-WEA3O01

[2] A.Götz et. al., “Tango Heads for Industry”, in Proc. 16th
International Conference on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’17), Barce-
lona, Spain, Oct. 2017, pp. 1195-1200.
doi:10.18429/JACoW-ICALEPCS2017-THCPL05

[3] R. Bourtembourg et. al., “TANGO Kernel Development
Status”, in Proc. 16th International Conference on Acceler-
ator and Large Experimental Physics Control Systems
(ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 27-33.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL02

[4] M. Canzari et. al., “A GUI prototype for SKA1 TM Ser-
vices: compliance with user-centered design approach”, in
Proc. Software and Cyberinfrastructure for Astronomy V
Conf. (Astronomical telescopes + Instrumentation
SPIE’18), Austin, Texas, United States, Jun. 2018.
doi:10.117/12.2313276

[5] OpenAjax, http://www.openajax.org/
[6] SVG, https://en.wikipedia.org/wiki/

Scalable_Vector_Graphics
[7] SSE, https://www.w3.org/TR/eventsource/
[8] I. Khokhriakov, “Streaming Tango events to HTTP via

SSE”, 33rd Tango Collaboration meeting, DESY, Hamburg,
Germany, Jun. 2019.

[9] Waltz releases, https://github.com/
tango-controls/waltz/releases

[10] A. Rauschmayer, Exploring ES6. Leanpub, 2015.
[11] Webix, https://webix.com/
[12] JavaScriptMVC-1.5.x, https://github.com/jmvc-15x
[13] JS Mixin, http://javascript.info/mixins
[14] Waltz Developers guide, http://www.waltz-controls.space
[15] I. Khokhriakov, “TangoWebapp Insights”, 32nd Tango Col-

laboration meeting, ELI-Beamlines, Dolni Brezany, Czech
Republic, Jun. 2018.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

User Interfaces, User Perspective, and User Experience(UX)
WESH3003

1523

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[16] JS Promises, https://www.w3.org/2001/tag/
doc/promises-guide

[17] JS async/await, https://developers.google.com/
web/fundamentals/primers/async-functions

[18] webix-protoUI, https://docs.webix.com/
api___protoui.html

[19] war file, https://en.wikipedia.org/wiki/
WAR_(file_format)

[20] Apache Tomcat 9, https://tomcat.apache.org/
download-90.cgi

[21] Load Balancer, https://en.wikipedia.org/wiki/
Load_balancing_(computing)

[22] iframe, https://www.w3schools.com/html/
html_iframe.asp

[23] Webix, Integration with Other Frameworks,
https://docs.webix.com/
desktop__third_party_integration.html

[24] The Reactive Manifesto,
https://reactivemanifesto.org

[25] Sardana, https://sardana-controls.org/
[26] Waltz GitHub contributions, https://github.com/

tango-controls/waltz/graphs/contributors
[27] I. Khokhriakov, O. Merkulova, “Waltz worshop@Solaris”,

Waltz workshop@Solaris, Solaris, Krakow, Poland, Jul.
2018.

[28] I. Khokhriakov, O. Merkulova, “Waltz architecture over-
view”, Tango WebUI workshop, MAX-IV, Lund, Sweden,
Oct. 2018.

[29] I. Khokhriakov, O. Merkulova, “Waltz worshop@ESRF”,
ESRF, Grenoble, France, Jan. 2019.

[30] I. Khokhriakov, “TangoWebapp status report”, INAF, Fi-
renze, Italy, Jun. 2017.

[31] I. Khokhriakov, “TangoWebapp workshop@DESY”,
DESY, Hamburg, Germany, May 2018.

[32] O. Merkulova, “TangoWebapp overview”, 32nd Tango Col-
laboration meeting, ELI-Beamlines, Dolni Brezany, Czech
Republic, Jun. 2018.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3003

WESH3003
1524

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

