
jddd MIGRATION TO OpenJDK11+: BENEFITS AND PITFALLS
E. Sombrowski, K. Rehlich, G. Schlesselmann, DESY, Hamburg, Germany

Abstract

The Java Doocs Data Display (jddd) is a Java-based tool
for creating and running graphical user interfaces for ac-
celerator control systems. It is the standard graphical user
interface for operating the European XFEL accelerator.
Since Java 8 Oracle introduced a number of major changes
in the Java ecosystem's legal and technical contexts that
significantly impact Java developers and users. The most
impactful changes for our software were the removal of
Java Web Start, Oracles new licensing model and shorter
release cycles. To keep jddd up to date, the source code had
to be refactored and new distribution concepts for the dif-
ferent operating systems had to be developed. In this paper
the benefits and pitfalls of the jddd migration from Oracle
Java8 to OpenJDK11+ will be described.

INTRODUCTION
jddd [1, 2] is a common tool for designing and running

control system windows (also called panels) at DESY
Hamburg and DESY Zeuthen. It has a graphical editor with
a rich set of ready-made widgets for control panel design.
Synoptical displays can easily be created without any pro-
gramming knowledge. So far, more than 15000 panels have
been designed in Hamburg and Zeuthen.

At DESY Hamburg statistical data about the jddd usage
are collected. The average and maximum number of panels
started per day, users per day and sessions started per day
are displayed in Table 1. In recent years usage has been
steadily increasing.

Table 1: jddd Usage Statistics 2018 at DESY Hamburg

 #started
panels

per day

#started
diff. panels

per day

#started
jddd sessions

per day
av 2982 558 169
max 7221 1089 434

JAVA UPGRADE
Since Java 8 Oracle made significant modifications in

the Java ecosystem [3]. To keep jddd up to date, new solu-
tions had to be found for the following changes:

Oracles New Licensing Model
Starting with Java 11 Oracle offers two distinct Java re-

leases with different license models:
• Oracle JDK under commercial OTN License Agree-

ment for Java SE [4]: This release offers a long term
support, but is only free of charge for development
and tests. For commercial use high costs incur.

• Oracle OpenJDK under the open source GNU General
Public License v2 with Classpath Exception

(GPLv2+CPE): This release is free of charge, but does
not offer long term support.

As an alternative to Oracle a zoo of long term support
OpenJDK distributions from different communities and
vendors is available, like AdoptOpenJDK, Corretto by Am-
azon or Read Hat OpenJDK.

Oracle has been and will stay the reference implementa-
tion for Java. We decided to use Oracle OpenJDK, because
the license model fits our needs and environment best.

Dealing with Shorter Release Cycles
Some months ago Oracle introduced a new release cycle

for Java. It changed from a feature-based to a time-based
release cycle. There are now two types of releases:

• Major releases for Oracle JDK and OpenJDK every 6
months, which are only supported until the next re-
lease.

• Commercial Oracle JDK Long Term Support (LTS)
releases every 3 years: The most recent LTS release is
Java 11, which came out in September 2018 and will
be supported until 2026. The next will be Java 17 in
September 2021.

The advantage of short release cycles is that new Java
features will be usable much faster.

It also makes migration easier. The changes are smaller
and more incremental, so each upgrade is easier and less of
change.

We started jddd migration from Java 8 to OpenJDK11+
in September 2018 with OpenJDK 11, which turned out to
be quite easy. No major code changes had to be done. Since
OpenJDK11 jddd application are always compiled with the
latest OpenJDK release without any problems.

Replacement of Java Web Start
During the past years Java Web Start and Java Network

Launching Protocol (JNLP) were used for the internal dis-
tribution of jddd to the users. To access the application the
users had to install a current Java that contained support for
JNLP. To start jddd, they would click on a JNLP link and
the Java Web Start program would download the JNLP file,
interpret it, download the current version of the applica-
tion, and run it in a security sandbox.

Java Web Start provided an easy and uncomplicated way
to distribute a completely configured application to every-
one’s desktop independent of the operating system. As Java
Web Start is no longer part of Java, a substitution for JNLP
had to be found.

Java 8 is the last version providing a separate Java
Runtime Environment (JRE). Since Java 9 there is only the
Java Development Kit (JDK) available, which is basically
the JRE plus a compiler, a debugger and several other tools.
Instead of a separate JRE Oracle introduced the module
system Jigsaw. The idea of Jigsaw is to modularize the Java

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1003

User Interfaces, User Perspective, and User Experience(UX)
WESH1003

1501

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

application and to use jlink for the generation of a custom
JRE that contains only the platform modules required for a
given application.

Packaging the application with this reduced JRE would
be the most lightweight and performant solution for appli-
cation deployment. Unfortunately jddd depends on many
old non-modularised libraries, which makes it impossible
to use jlink.

For this reason we decided to compile and bundle all
jddd jars together with the complete OpenJDK. Always the
latest OpenJDK version is used to ensure the best possible
safety.

Four different packages are needed at DESY (see screen-
shots in Fig. 1). One for each:

• The jddd editor
• XFEL MainTaskbar
• FLASH MainTaskbar
• SINBAD MainTaskbar
On Windows these packages are available via a centrally

managed software repository. On Linux packages are pro-
vided for Debian, CentOS and RedHat. On Mac the jddd
packages are available as Mac applications.

STARTING OLD JAVA APPLICATIONS
VIA A jddd BUTTON

Figure 1 shows the jddd based control windows for
XFEL, FLASH and SINBAD (called MainTaskbar), which
are used as entry point to start all needed graphical user
interfaces (GUIs). These are mainly jddd panels, but can
also be Matlab, Python or other Java applications.

Because it would be much effort to upgrade all old Java
applications, we found a simple solution to start these GUIs
without any code and JNLP start script modification: We
added jaws, a Java Web Start replacement by Cosylab [5],
to our jddd packages. The jddd application now internally
replaces all javaws calls by jaws. Because the Java Virtual
Machine is backward compatible and can run older
bytecode, most old Java applications (except JavaFX ap-
plications) can be started with the current OpenJDK from
the jddd package.

 Using jaws is a suitable intermediate solution until the
transition from Java 8 to OpenJDK11+ will be finished for
all applications.

UPGRADE OF THE MESSAGING
SYSTEM - FROM JMS TO MQTT

The jddd software utilizes a messaging system for col-
lecting runtime statistics (as shown in table 1), evaluating

failures/exceptions and sending panel update notifications
within running jddd applications at DESY.

With the Java upgrade we decided to switch the messag-
ing system from JMS to the more popular MQTT protocol.
The Eclipse Paho Java Client library [6] provides an open-
source implementation of the MQTT messaging protocol.
It is well documented and fits our needs perfectly.

As broker we decided to use the open-source message
broker Eclipse Mosquitto [7] because it is lightweight and
available as Debian package.

UPGRADE OF THE
jddd WEB INTERFACE

For remote monitoring and expert assistance an HTML5
version of jddd has been developed [8]. At server side jddd
is started in a Tomcat application server. A buffered image
of each panel is created with an update rate of 0.5 Hz. For
client/server communication the WebSocket protocol is
used. Images are sent from the server to the client, mouse
events are sent in the opposite direction.

The web interface has been successfully tested with
OpenJDK11+ and Tomcat 9. The upgrade is scheduled for
the end of this year.

CONCLUSION
For the Java update of our jddd software, the following

decisions were made:
• We use Oracle OpenJDK11+.
• We stick to Oracles short release cycles and compile

and distribute jddd always with the current OpenJDK
version.

• We deploy jddd packages including all jars, the com-
plete JDK and the jaws software for starting old Java
applications via jddd.

The migration from Java 8 to OpenJDK11+ was success-
ful. No major problems were observed, no matter on which
operating system. Unfortunately it has not been possible to
switch completely to the new Java module system, due to
many legacy libraries. The plan is to replace these libraries
to be able to use jlink in future.

The concept of jddd packages containing the current
JDK has proven itself. Even though the packaging and de-
ployment procedure is more complicated now compared to
Java Web Start before, the benefit is that jddd no longer
depends on the appropriate preinstalled Java version.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1003

WESH1003
1502

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 1: Screenshots of the jddd Editor (top left), XFEL MainTaskbar (top right), FLASH MainTaskbar (bottom left),
SINBAD MainTaskbar (bottom right).

REFERENCES
[1] doocs/jddd, http://doocs-web.desy.de
[2] E. Sombrowski, A. Petrosyan, K. Rehlich, and W. Schütte,

“jddd: A Tool for Operators and Experts to Design Control
System Panels,” in Proc. 14th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems
(ICALEPCS'13), San Francisco, CA, USA, Oct. 2013, paper
TUMIB09, pp. 544-546.

[3] Oracle Java Client Roadmap Update,
https://www.oracle.com/technetwork/java/
javase/javaclientroadmapupdate2018mar-
4414431.pdf

[4] Oracle Technology Network License Agreement for Oracle
Java SE, https://www.oracle.com/downloads/
licenses/javase-license1.html

[5] COSYLAB, https://www.cosylab.com

[6] Eclipse Paho MQTT Java library at GitHub,
https://github.com/eclipse/paho.mqtt.java

[7] Eclipse Mosquitto MQTT broker homepage,
https://mosquitto.org

[8] E. Sombrowski, R. Kammering, and K. R. Rehlich, “A
HTML5 Web Interface for JAVA DOOCS Data Display,” in
Proc. 15th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS'15), Melbourne, Aus-
tralia, Oct. 2015, pp. 1056-1058. doi:10.18429/JACoW-
ICALEPCS2015-WEPGF150

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1003

User Interfaces, User Perspective, and User Experience(UX)
WESH1003

1503

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

