
NEW JAVA FRAMEWORKS FOR BUILDING
NEXT GENERATION EPICS APPLICATIONS
K. Shroff, National Synchrotron Light Source II, Upton, USA

C. Rosati, G. Weiss, European Spallation Source, Lund, Sweden
K. Kasemir, E. Smith, Oak Ridge National Laboratory, Oak Ridge, USA

Abstract
Phoebus is a Java/JavaFX framework for creating state-

of-the-art, next-generation desktop applications for
monitoring and controlling EPICS systems. The recent
developments in Java and JavaFX have made it possible to
reconsider the role of the Eclipse Rich Client Platform
(RCP) in the development of client applications. Phoebus’s
aim is to provide a simple to use and yet "rich-enough"
application framework to develop modular JavaFX
desktop applications for the most recent Java platform.
Phoebus is an extensible framework for multiple control
system protocols. It provides features for developing
robust and scalable multi-threaded client applications. Key
features include event rate decoupling, caching and
queuing, and a common set of immutable data types to
represent controls data from various protocols. The paper
describes the framework as used to implement applications
and service for monitoring EPICS PVs. The benefits
highlighted will provide the EPICS community a new
development perspective.

MOTIVATION
Since 2006 Control System Studio[1, 2, 3] has been

adopted as the graphical user interface for the control
systems of many Accelerators at various universities and
laboratories. The growth of an active collaboration has
accompanied this increase in adoption. In 2018 a survey
was conducted of both the end users of the tools and
applications included in the CS-Studio products as well as
the developers that built and maintained them. The results
of the survey highlighted a consistent set of liked and
disliked aspects of the CS-Studio project.

The users generally liked the available set of applications
and the integrated environment of CS-Studio allowed for
effective and intuitive workflows however the product was
too much like an IDE with performance and reliability
issues. The developers appreciated the extensible
architecture which allowed them to easily add new
applications, expand the functionality of the common
product, and integrate with their existing infrastructure
however the learning curve was very steep. In particular,
understanding the build system and OSGi life cycle
presented a significant barrier to new participants. Most of
the identified issues were associated with CS-Studio’s
dependence of the Eclipse Rich Client Platform [4] and
thus the Phoebus project [5, 6] was initiated to serve as a
replacement of the Eclipse RPC framework.

INTRODUCTION TO PHOEBUS

Historical Considerations
In 2004 the Eclipse rich client platform provided a great

array of features for developing extensible client
applications. It supported a modular architecture with
support for extensibility via pluggable extension points and
plugin life cycle management. It had its own build system
and a workbench consisting of views, editors, and
perspective. It also provided support for managing
preferences, logging, native language support, and updates.

Current Situation
The benefits of using the Eclipse RCP framework are

currently accompanied by some major drawbacks. The
build system has increased in complexity which has made
it difficult to understand and manage. For example, a
complete compilation of CS-Studio from sources can take
almost an hour

A lot of the features of the Eclipse RCP framework are
now part of the java language itself and are better supported
by a larger community. The modular architecture of Eclipse
built on OSGi bundles/ Eclipse plugins could be replaced
with the use of Java modules. The Java service provider
interface (SPI) provided a viable alternative to the Eclipse
extension points.

Additionally, the Eclipse framework ties us to the
standard widget toolkit (SWT) [7], which was the best GUI
library a decade ago, but is being overshadowed by JavaFX
[8]. The JavaFX library, which was developed to replace
swing as the standard GUI library for the java se, is a far
more feature rich and better performing alternative to
SWT. The library comes with a rich set of well designed
easy to use widgets, supports properties bindings, CSS, etc.

Figure 1: Comparison of dialogs created using SWT and
JavaFX GUI libraries.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1002

User Interfaces, User Perspective, and User Experience(UX)
WESH1002

1497

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1 illustrates the significant difference in the look
and feel of the same dialog developed using SWT and
JavaFX.

The Path Ahead
Given the drawbacks of the Eclipse RPC framework and

the improvements to java and JavaFX GUI library, the
Phoebus[1] project was developed to serve as a
replacement for the Eclipse RCP[3] for CS-Studio[2]
application and tool development.

ARCHITECTURE OF PHOEBUS

Figure 2: Architecture of Phoebus.

The Phoebus framework, as shown in Fig. 2., is
organized in the following parts.

Core A set of modules containing shared services,
descriptions of service provider interfaces, protocol
libraries, etc. These core modules simplify application
development by allowing the developer to focus only on
the functionality of the application and not have to worry
about implementing clients to multiple controls protocols,
a preference manager, etc... The use of these core modules
also optimized the use of common resources, like
connection to various web services and protocol clients.

Applications(apps) Application examples include a
simple “Probe” tool, an operator display panel editor and
runtime, an alarm display client, logbook viewer, etc.
While many of the applications are generic and interface
with any EPICS-based control system, each site can also
add site-specific applications to meet local needs.

By now all essential CS-Studio functions that were
previously implemented for Eclipse RCP have been
translated into Phoebus applications. In this process, the
Java code for application logic was often simply copied.
Adjustments were required for UI code that needed to
transition from SWT to JavaFX. Code that interfaced to
RCP for reading preferences, scheduling background tasks

and integrating into the window system needed to use the
corresponding API provided by Java itself or the Phoebus
core modules.

Products It describes the final packaged product that is
delivered to the users. It consists of a launcher packaged
with a set of applications and the core & third parties
libraries needed. The common product can be easily
customized to include only the desired applications along
with the site specific implementation of various SPI’s.

The Fig. 3 shows a screenshot of the NSLS2 CS-Studio
product built using Phoebus. The product includes the
alarm viewers and the databrowser which is retrieving
historical data from the appliance archiver. These
applications and the specific datasources they use were
packaged as per the requirements of the NSLS2 controls
environment and demonstration pluggable nature of the
Phoebus framework. The figure also shows the context
menu population with actions integrating the alarm viewer
with other CS-Studio applications available like probe,
logbook, databrowser, etc. The integrated environment of
CS-Studio applications is preserved on the Phoebus
framework.

Services A set of standalone services, like the alarm
server, archiver, scan engine, performing a well defined
function and with a well defined interface. While
technically similar to a product, services do not contain UI
elements, they are not directly accessed by end users. For
example, an archive engine service is deployed by a system
administrator to continuously collect and store data. End
users can then access this data from a history plot like the
one shown in Fig. 3.

Services can be independently deployed, and permit the
use of any protocol, database, etc. These services allow for
the adoption of a service oriented architecture, moving
business functions into these services allows for thinner
clients while also improving scalability, maintainability,
and reliability of the entire system.

Figure 3: CS-Studio built using Phoebus.

BUILD SYSTEM
The Phoebus project depends on features which are now

part of the java language. This use of standard java features
has resulted in a significant simplification of the project's

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1002

WESH1002
1498

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

build system in comparison to Eclipse’s tycho build. The
simplification is not just represented in the greatly reduced
and easy to manage project metadata files and
dependencies but also an order of magnitude reduction in
the build time, which is now on the order of minutes. By
moving away from the complexities of the Eclipse tycho
build system we were also able to improve the
predictability and reproducibility of the build. Currently
the dependencies of Phoebus are managed via maven and
the project can be built using either maven or ant. In the
future we intend to move to the Java modules system and
continue to transition towards using standard Java features.

TESTING
In addition to unit testing using JUnit, the simplified

Phoebus framework has facilitated the creation of
integration testing. The adoption of JavaFX has enabled the
use of modern easy to use UI testing solutions like TestFX.

CONTINOUS INTEGRATION
Continuous integration is an essential part of any modern

collaborative software development workflow. The
Phoebus project uses Travis as the default CI engine
triggered on any commit, pull request, and merge. In
addition to Travis multiple CI solutions have been adopted
to best suit the needs of different collaborators, these
include Appveyor, Gitlab, and Jenkins. The easy adoption
of multiple CI solutions has been possible due to the simple
and standardized build system of Phoebus.

MOVING FROM ECLIPSE TO PHOEBUS
As CS-Studio applications and tools are moved from the

Eclipse RCP to the Phoebus framework there is a concerted

effort to ensure that this transition is made as seamless as
possible. In order to allow individual sites to control the
transition it is possible for a create composite product
which contains applications built on both the Eclipse RCP
and the Phoebus framework. Fig. 4 represents an example
composite CS-Studio product.

The “org.csstudio.phoebus” plugin allows Phoebus
application can be invoked from menus, toolbars, and OPI
screens built on the Eclipse framework making the
transition transparent to the end user.

Figure 4: A composite CS-Studio product containing both
Phoebus and Eclipse based applications.

Figure 5: SNS beam line dashboard after upgrading to Phoebus.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1002

User Interfaces, User Perspective, and User Experience(UX)
WESH1002

1499

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SUMMARY
Using the latest feature of java and the JavaFX GUI

library the Phoebus framework provides an effective
alternative for the Eclipse RCP framework for developing
CS-Studio applications and services. The framework uses
standard build systems, generic testing solutions and set of
core services and interfaces reduces the entry barrier for
developers.

By now some deployments were able to completely
transition from the Eclipse-based CS-Studio to the Phoebus
platform, proving that the Phoebus project is
fundamentally successful in meeting its requirements. Fig.
5 shows the SNS version of CS-Studio built on Phoebus.

For end users the best features of the CS-Studio product,
like the integrated environments, are preserved while the
performance and reliability are enhanced with the upgrade
to JavaFX.

ACKNOWLEDGEMENTS
The efforts of the CS-Studio collaboration are

responsible for the creation of the Phoebus framework. In
addition to the collaborators the authors would like to thank
the many users who have over the years spent a lot of time
and effort to understand this tool and through their
observations and feedback help guide CS-Studio and
Phoebus projects.

REFERENCES
[1] CS-Studio,

http:// http://controlsystemstudio.org/

[2] M. R. Clausen, C. H. Gerke, M. Moeller, H. R. Rickens, and
J. Hatje, “Control System Studio (CSS)”, in Proc. 11th Int.
Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS'07), Oak Ridge, TN, USA, Oct. 2007,
paper MOPB03, pp. 37-39.

[3] K. Kasemir et al., “Control System Studio Applications”, in
Proc. 11th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems. (ICALEPCS ‘07), Knoxville, USA.

[4] Eclipse, https://www.eclipse.org

[5] K.-U. Kasemir, “Control System Studio Applications”, in
Proc. 11th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'07), Oak Ridge,
TN, USA, Oct. 2007, paper ROPB02, pp. 692-694.

[6] Phoebus, https://github.com/shroffk/phoebus

[7] Standard Widget Toolkit, SWT,
 https://www.eclipse.org/swt

[8] JavaFX, https://www.openjfx.io

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH1002

WESH1002
1500

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

