
NXCALS - ARCHITECTURE AND CHALLENGES OF THE NEXT CERN
ACCELERATOR LOGGING SERVICE

J. Wozniak†, C. Roderick, CERN, Geneva, Switzerland

Abstract
CERN’s Accelerator Logging Service (CALS) is in pro-

duction since 2003 and stores data from accelerator infra-
structure and beam observation devices. Initially expecting
1TB / year, the Oracle based system has scaled to cope with
2.5TB / day coming from >2.3 million signals. It serves
>1000 users making an average of 5 million extraction re-
quests per day. Nevertheless, with a large data increase dur-
ing LHC Run 2 the CALS system began to show its limits,
particularly for supporting data analytics. In 2016 the Next
CERN’s Accelerator Logging Service (NXCALS) project
was launched with the aim of replacing CALS from Run 3
onwards, with a scalable system using “Big Data” technol-
ogies. The NXCALS core is production-ready, based on
open-source technologies such as Hadoop, HBase, Spark
and Kafka. This paper will describe the NXCALS architec-
ture and design choices, together with challenges faced
while adopting these technologies. This includes: write /
read performance when dealing with vast amounts of data
from heterogenous data sources with strict latency require-
ments; how to extract, transform and load >1PB of data
from CALS to NXCALS. NXCALS is not CERN-specific
and can be relevant to other institutes facing similar chal-
lenges.

INTRODUCTION
The CERN Accelerator Logging Service (CALS) [1]

was designed in 2001, has been in production since 2003
and stores data from all of CERN’s accelerator infrastruc-
ture and beam observation devices. Initially expecting 1TB
of data per year, the Oracle–based CALS system has scaled
to cope with a throughput of 2.5TB per day coming from
more than 2.3 million signals. It stores 1TB per day for the
long-term and serves more than 1000 users from across
CERN, who collectively submit 5 million extraction re-
quests per day on average.

CALS is considered as being mission-critical and the go-
to service when investigating problems with accelerator
equipment or unexpected beam behaviour. Whenever a
new system is commissioned, or a new mode of operation
is established – there are inevitably subsequent requests to
setup the corresponding data logging. This is magnified
when new machines or facilities are commissioned.

Since the start of LHC, the scope of CALS and the de-
mands placed upon it have evolved significantly and con-
tinue to do so. Figure 1 shows the restart of LHC at the end
of 2009, there was an order of magnitude increase in data
being logged – mainly coming from the new Quench Pro-
tection System. More recently, for the restart of LHC post
LS1 (Long Shutdown 1) there was another almost order of

magnitude increase in data being logged – mainly due to
the need for more beam related data on a bunch-by-bunch
and turn-by-turn basis.

Figure 1: CALS long-term daily storage evolution.

The trend of evolving logging needs has continued in re-
cent years with the arrival of new facilities such as AWAKE
and MEDICIS, as well as for the commissioning of new
machines such as LINAC4.

The CALS system has scaled well in terms persisting ac-
quired data and providing linear response times for data ex-
tractions. However, with basic accelerator operation reach-
ing a high level of maturity, attention has turned to more
complex analyses such as studying beam effects over
longer periods of time. In other words, CALS has increas-
ingly been subjected to extraction of much larger datasets
over longer periods of time to support advanced data ana-
lytics. It is in this domain, during LHC Run 2, that the
CALS system quickly started to show its limits. The CALS
Oracle-based architecture is difficult to scale horizontally
and does not perform particularly well for large data pro-
cessing for signals with complex data structures. A key is-
sue is that in order to perform moderately advanced anal-
yses, the data first needs to be extracted and in certain sce-
narios this takes too long (e.g. for some use cases, it takes
12 hours to extract 24 hours of data). With increasing data
volumes, more challenging analyses to be performed and a
desire to quickly get answers to questions that can support
operations – it was clear that actions needed to be taken.

In 2016, with all of the above knowledge and also aware
that the Hi-Luminosity LHC (HL-LHC) machine is sched-
uled for commissioning in the not so distant future, the
NXCALS project was launched with the aim of fully re-
placing CALS from LHC Run 3 (2021) onwards. The aim
being to gain solid operational experience with NXCALS
during several years and then have time to further adapt the
system as needed during LS3 (Long Shutdown 3), while
still ahead of HL-LHC commissioning.

NEED OF “BIG DATA” TECHNOLOGIES
In recent years, the so-called “Big Data” technology

landscape has evolved significantly to support large scale

† jakub.wozniak@cern.ch, chris.roderick@cern.ch

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

Data Analytics
WEPHA163

1465

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

data logging and analysis, opening up new possibilities to
perform efficient analysis of large data sets.

To gain experience with these technologies and help
choose a direction for NXCALS, a Proof of Concept (PoC)
Logging System was developed in collaboration with the
CERN IT-DB group in early 2016. The PoC was based on
the open-source Apache Hadoop technology - as a replace-
ment for the current Oracle-based CALS system. Both
Apache Impala and Apache Spark were evaluated as query
/ analysis engines. Figure 2 shows the existing CERN use
cases, both Impala and Spark outperformed Oracle when it
comes to querying and extracting data above a certain num-
ber of records (i.e. longer time windows), with Spark in the
lead.

Figure 2: NXCALS PoC data extraction times (lower is
better) in function of number of records extracted.

The PoC work clearly demonstrated the potential to re-
place the current system and improve performance and
scalability for an overall lower hardware cost than the cur-
rent CALS system (not considering the Oracle Licensing
costs). The subsequent approval by CERN management
led to the start of full-scale development of the new
NXCALS system.

NXCALS ARCHITECTURE
& TECHNOLOGIES

Development of the NXCALS system built on the expe-
rience gained during the aforementioned PoC project and
led to a microservices architecture as shown in Fig. 3.

Figure 3: Overview of the NXCALS architecture.

The aim of this architecture is to be able to easily up-
grade or replace different aspects of the system in the future
as necessary, without being forced to put in place a com-
pletely new system. From a technology perspective,
NXCALS is based on in-house developments combined

with open-source software such as Hadoop (HDFS and
HBase), Kafka, Spark, and Jupyter notebooks. The use of
these technologies is described below.

Data Storage
Data is stored in the Hadoop layer. There is a need to

have relatively fast access to the most recent data and also
to be able to keep data over a long period of time in an
efficient manner with good analysis and extraction perfor-
mance. As such, NXCALS has a so-called Lambda archi-
tecture comprised of two main parts:

1. An HBase database which serves as a low-latency re-
pository from which data of the last 36 hours can be
extracted by users.

2. An HDFS file system which serves as the long-term
storage of data.

Incoming data is frequently written into many small files
which need to be compacted into larger files in order to op-
timise the data access performance. Therefore, using
HBase for the most recent data gives time for an in-house
developed software process to execute a daily de-duplica-
tion and compaction process of the data from the previous
day.

Apache Parquet was chosen for HDFS storage as the co-
lumnar format is highly compressible, is compatible with
all processing frameworks and supports efficient pruning
of the columns to optimise data access.

NXCALS has been designed as a multitenant system al-
lowing to store data from distinct source systems. Data is
partitioned in files according to the policy for the source
system and then by time. With such an approach it is pos-
sible to use NXCALS for archiving data from CERN sys-
tems which previously required their own dedicated data
archive such as the Post-mortem and Alarm systems.

Data Acquisition
In-house developed data acquisition processes called

“Data sources” acquire data via CMW (Controls Middle-
ware) [2] and send it to NXCALS using the NXCALS data
ingestion API. The Data sources software is written in Java
using the Akka framework and is fully horizontally scala-
ble and fault tolerant. This means to satisfy requirements
for sending more data, more data sources processes can be
configured to run, possibly on additional hardware. The
data sources are configured in the central Controls Config-
uration Service, using the standard CCDE (Controls Con-
figuration Data Editor) Web application [3] as shown in
Fig. 4.

The CCDE allows users to easily configure what should
be logged, in a tool that they undoubtedly already use for
configuring other aspects of the control system. Further-
more, having an integrated configuration facilitates keep-
ing coherency across the control system in case controls
device coordinates are modified.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

WEPHA163
1466

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

Figure 4: CCDE to configure NXCALS data acquisition.

Data Ingestion
The NXCALS data ingestion API used by the Data

Sources, sends acquired data to Apache Kafka in Apache
Avro format. Kafka was selected for being a highly relia-
ble, high-throughput, low-latency platform for handling
real-time data feeds. In NXCALS, data is stored on Kafka
until it has been transferred into Hadoop by in-house ETL
(Extract-Transform-Load) processes which periodically
pull data from Kafka, convert it to Parquet format and write
it in parallel to HBase (for immediate access) and HDFS
temporary storage where it later gets compacted and dedu-
plicated into the final storage. The need for deduplication
comes from the fact that the Kafka ingestion chain only
guarantees the “at least once” message delivery semantics
and the messages can be repeated due to transmission er-
rors. These technology and architectural choices facilitate
high performance and reliability, where the aim is to guar-
antee zero data loss despite huge workloads.

Data Analysis and Extraction
Based on the experience gained during the PoC study

and given the rich set of functionalities available – Apache
Spark was selected to serve as the large-scale distributed
data processing / analysis engine. In order to allow
NXCALS to users extract data and/or perform data anal-
yses, an NXCALS client API has been developed based on
the Apache Spark APIs for Java and Python. The API in-
cludes NXCALS-specific extensions related to entity
metadata. The API can be used as a standalone Python or
Java bundle, or via SWAN.

SWAN (Service for Web based ANalysis) [4] is a CERN
platform to perform interactive data analysis from the Web
using Apache Jupyter notebooks. It has been configured to
integrate with Spark and NXCALS (Fig. 5), allowing users
to interact with NXCALS directly from the Web, execut-
ing, storing and sharing their analysis notebooks with oth-
ers.

Meta-data Service
In order to properly manage the overall coherency of the

system from data ingestion, to data storage and compac-
tion, to data analysis and extraction – an in-house devel-
oped Meta-data service is employed to manage the meta-
data describing:

• the entities for which timeseries data can be stored and
their evolution over time in terms of internal structure,

• the location of corresponding data (files etc.),
• the mapping of higher-level concepts such as “varia-

bles” and the corresponding entity fields which hold
the data.

The Meta-data service is written in Java and is backed
by a relational database with no vendor-specifics con-
straints.

Figure 5: SWAN Web analysis using Jupyter notebooks.

PERFORMANCE AND SCALABILITY
The core technologies used in NXCALS are based on the

concept of “horizontal scalability”, which essentially
means the ability to increase performance by adding more
resources to the underlying infrastructure. From this per-
spective, the NXCALS system has the potential to adapt to
the required performance needs of the future, provided suf-
ficient resources can be financed and that sufficient physi-
cal hosting capacity is available.

In terms of potential data analysis performance, a key
difference in NXCALS with respect to the existing CALS
system is a change in paradigm. With the CALS system,
users first extracted the data and then performed the analy-
sis on their local machines. With the NXCALS system, us-
ers seeking high levels of data analysis performance need
to submit their analysis algorithms to be executed on the
NXCALS cluster, using Spark, and then retrieve the re-
sults. Following this change in paradigm has already
shown cases where analysis times can be reduced from sev-
eral days to under an hour.

CURRENT STATUS
In April 2018, the NXCALS service was moved to a new

production computing cluster located in the CERN Com-
puting Centre. From this point onwards, NXCALS has
been considered as a production system in terms of core
functionality, user support, monitoring and ensuring avail-
ability.

Figure 6 shows an overview of the current NXCALS
production hardware with the core consisting 20 machines
having 960 Cores and 8 TB RAM.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

Data Analytics
WEPHA163

1467

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: Overview of the current NXCALS hardware.

The CMW data ingestion processes are fully operational
and logging data in parallel to both CALS and NXCALS
systems. Some recent use cases such as LHC Diamond
BLM analysis at IP7 & 16L2 (20-50 GB/day) could not be
satisfied by the CALS system, therefore such data is only
being sent to NXCALS from where it was successfully an-
alysed throughout 2018.

A growing number of users are porting their extraction
software to use the Apache Spark based data extraction API
and / or make use of SWAN. To help such users (as well as
new ones), a big effort has been made on documentation –
using the MKDocs software to have relevant code exam-
ples that are built and tested together with the NXCALS
system to ensure they are up-to-date and fully functioning.

In addition, work on adapting the current CALS data ex-
traction client API to pull data from NXCALS is at an ad-
vanced stage. The aim is to enable existing CALS clients
to move to NXCALS without forcing them to re-write their
code and learn Spark.

A key activity, somewhat aside from the new NXCALS
system itself, is the migration of data from CALS to the
new system. This has advanced very well over the summer,
with the majority of data migrated (more than 32E12 rec-
ords so far). The team continues covering special cases
which require further custom developments, for example
the treatment of LHC Fills and Beam modes.

MAJOR CHALLENGES
Replacing any large or mission-critical system will al-

ways present technical and strategic challenges to be over-
come. Some of the major challenges encountered so far for
NXCALS are described below.

Infrastructure
The very nature of Big Data technology requires a lot of

machines to ensure maximum performance via parallel
processing, as well as satisfactory data redundancy to en-
sure high service availability. These needs are multiplied
once the need for distinct environments for development,
testing, staging and production is factored in. Overall this
represents a financial challenge in terms of purchasing and
maintaining the infrastructure. There is also the logistics

challenge when it comes to installing and running the hard-
ware with suitable cooling and resilient powering strate-
gies.

Evolving Technologies
Unlike CALS which was based on the well-established

Oracle database platform, NXCALS is based on relatively
new technologies which continue to evolve. On one hand
this is very positive as it shows there is a large community
pushing to improve the already impressive software and
there is surely much untapped potential. However, on the
other hand this presents a major challenge. For example, it
is not always easy to find well established documentation
or examples on how to best deal with demanding scenarios
that go beyond the basic applications of the Big Data tech-
nologies. As another example, some problems encountered
simply need to wait for community consensus, develop-
ments and subsequent releases.

DevOps, Quality and Monitoring
Managing a large-scale microservice architecture like

NXCALS is extremely challenging. It is essential to have
strong DevOps processes with well-thought, automated de-
velopment pipelines enforcing strict quality assurance and
ensuring reproducible deployments. An enormous effort
was made on this starting with designing Continuous Inte-
gration / Continuous Delivery (CI/CD) pipelines which are
implemented based on Jenkins and Ansible integrating
with Gitlab. Multiple environments are configured to sup-
port development, testing, staging and production – all of
which can be updated with a single click. Concerning code
quality, the NXCALS team have a clear development pro-
cess established based on GitLab Merge Requests, backed
with a policy to have at least 70% code coverage. So-
narSource’s SonarQube software has been fully integrated
into the NXCALS CI/CD, to automatically detect bugs and
fail new builds that will result in a reduction in quality
(Fig. 7).

Figure 7: NXCALS code quality analysis via SonarQube.

Due to the large number of components involved, it is
also a challenge to ensure that everything continues to
work overtime. To tackle this, NXCALS is instrumented to
expose different types of health metrics which are moni-
tored using Prometheus/Alertmanager software that in turn

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

WEPHA163
1468

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

generates e-mail alerts in case of problems. Furthermore,
all metrics are constantly visible on Grafana dashboards.

Software Compatibility
 A challenge that is not so obvious from the outset, is en-

suring compatibility between the versions of the many dif-
ferent software elements such as Hadoop, HBase, Spark,
Python, Java etc. Sometimes a new version of one element
is released that provides an important fix or new feature,
however it may be incompatible with other parts of the sys-
tem – forcing further upgrades. Here, the dedicated deploy-
ment environments and automated testing play a signifi-
cant role. For other cases, like the upgrade to Java 11, it is
necessary to wait for community developments and subse-
quent releases of new software versions.

Data Writing Performance
Initial tests for writing Industrial Controls (WinCCOA)

data indicated the initial production load will be around
250K recs/sec. In our environment, HBase could not scale
to this load out of the box and significant efforts were re-
quired to tune the cluster and the NXCALS system to
achieve stable write and read performance. New data gen-
erators were created that can scale the load and simulate
various types of data (CMW/WinCCOA). Thanks to the
advanced monitoring in place, it was possible to observe
the effects of changing configurations, draw conclusions
and adapt. HBase performance tuning is not well docu-
mented and was extremely challenging, with the team re-
sorting to reading HBase source code to fully understand
what was happening and get ideas on how to improve. A
number of issues with the ETL configurations and with the
Hadoop infrastructure were identified and addressed lead-
ing to the required performance. It was also proven that the
performance can indeed scale horizontally by adding ma-
chines.

Data Reading Performance
Users reported described regular analyses that took 1

hour to process 1 day of numeric data in CALS, that now
return a week of data instantaneously in NXCALS. How-
ever, for other cases, performance is not yet satisfactory. A
lot of efforts were made to tune extraction performance by
adapting the daily data compaction process to arrange data
in an optimal way with respect to data extraction patterns
resulting in a ~10x improvement in extraction times.

Extraction times are linearly dependent on storage file
sizes (partitions) plus data structures, compression ratios,
selected columns, parallelism, etc. With a lot of scope to
tune NXCALS, this will be major focus in the next years.

Data Migration
The migration of > 1PB historical data from CALS for

some 2.6 million signals, is a project apart and an enormous
challenge. In-house developed Java software reads histori-
cal data from CALS, transforms it to NXCALS represen-
tations and writes it to NXCALS using the same data in-
gestion mechanism used to receive live data. The act of mi-

grating the data achieves the critical objective of preserv-
ing the historical data and at the same time provides an ex-
cellent test of the stability and performance of NXCALS.

Most historical data have been migrated at this time and
along the way, many performance and stability issues were
identified and solved – dealing with peak transfer rates ex-
ceeding 2.1e6 recs/sec. The migration processes were exe-
cuted on ~100 CERN Openstack machines (virtual com-
puters). A dedicated Migration Verifier application has
been developed to identify any holes in the migrated data
(e.g. due to infrastructure failures) and will be further ex-
tended to automatically re-migrate data in such cases.

NEXT STEPS AND FUTURE OUTLOOK
The aim is to switch off the CALS system by the end of

2020. In the meantime, the focus is on completion of his-
torical data migration, data extraction API developments
and providing a replacement for TIMBER. TIMBER is the
general GUI used to visualise and extract logged data cur-
rently written in Java Swing. This will be re-developed us-
ing our standard Web technologies (Angular, Java, Spring)
to interact with NXCALS instead of CALS.

Once all of the above is in place, key areas to focus will
be further tuning the system performance and enhancing
NXCALS as a platform for machine learning applications.

SUMMARY
NXCALS is the next generation of CERN’s Accelerator

Logging Service. The new system is at an advanced stage
of development and already serving challenging use cases
in a productional capacity. The microservice-based archi-
tecture and horizontally scalable technologies employed
give a solid basis from which to evolve in the future to sup-
port the emerging data logging and analysis requirements
for the entire CERN complex and the future High-Lumi-
nosity LHC machine. Meanwhile, the use of open source
software and a non-CERN-specific modular design mean
that NXCALS could be ported to fulfil similar data logging
and analysis requirements in other institutes and domains.

REFERENCES
[1] C. Roderick et al., “The CERN Accelerator Logging Ser-

vice - 10 years in operation: A look at the past, present, and
future”, in Proc. ICALEPCS’13, San Francisco, CA, USA,
Oct. 2013, paper TUPPC028

[2] W. Sliwinski, J. Lauener, “How to design & implement a
modern communication middleware based on ZeroMQ”, in
Proc. ICALEPCS’17, Barcelona, Spain, Oct. 2017,
doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

[3] L. Burdzanowski et al., “CERN Controls Configuration
Service – A challenge in usability”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017, doi:10.18429/JACoW-
ICALEPCS2017-TUBPL01

[4] SWAN, http://swan.web.cern.ch

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

Data Analytics
WEPHA163

1469

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

