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Abstract
Sirius beam diagnostics group is responsible for specify-

ing, designing and developing IOCs for most of the diag-
nostics in the Booster, Storage Ring and Transport Lines,
such as: Screens, Slits, Scrapers, Beam Position Monitors,
Tune Measurement, Beam Profile, Current Measurement, In-
jection Efficiency and Bunch-by-Bunch Feedback. In order
to ease maintenance, improve robustness, repeatability and
dependency isolation a set of guidelines and recipes were
developed for standardizing the IOC deployment. It is based
on two main components: containerization, which isolates
the IOC in a well-known environment, and a remote boot
strategy for our diagnostics servers, which ensures all hosts
boot in the same base operating system image. In this paper,
the remote boot strategy, along with its constituent parts, as
well as the containerization guidelines will be discussed.

INTRODUCTION
Sirius [1], like many other particle accelerators and high-

energy physics experiments, employs hundreds to thousands
of device control system entities. It abstracts the so called
Front-End Controller (FEC) layer, of modern control sys-
tems, from the Client Application layer and, in the case of a
three-tier architecture, Middle-Layer Services layer [2, 3].

In the case of facilities based on EPICS [4], like Sirius,
Input-Output Controllers (IOCs) act as the FEC and export
its functionalities into Process Variables (PVs). As such,
IOCs, after completing its development cycle (i.e. analysis,
design, implementation, test), need to be deployed to the
control system in a consistent way, minimizing downtime
and coupling to other systems, whereas maximizing the flex-
ibility of changes and rollback strategies in case something
fails.

Modern installations typically have thousands of IOC in-
stances and hundreds of thousands of PVs, in which control,
monitoring, archiving and complex interactions with each
other take place. Thus, the process of manually compiling,
bundling the necessary configuration files and downloading
the IOC application becomes a burden and an error prone
task to the system maintainer. In this sense, the control sys-
tem environment that has in its foundation principles like
consistency and reliability becomes more fragile.

In order to achieve the desired capabilities of such a de-
ployment system, many laboratories and institutes have de-
veloped strategies to solve and guide this process employing
a myriad of techniques, such as Agile Development, Con-
tinuous Integration and Continuous Deployment, and tools,
such as rsync file synchronizing tool, Network File System
(NFS), Jenkins, Puppet, Ansible and Containers [5–9].
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In the next sections, the standards, development cycle and
tools chosen by the Sirius beam diagnostics group will be
discussed.

DIAGNOSTICS SYSTEMS
Sirius Diagnostics systems can be summarized by Table 1

extracted from [10]:

Table 1: Summary of Beam Diagnostics Components.
LINAC is the Linear Accelerator, LTB is the Linac to Booster
Transfer Line, BO is the Booster Ring, BTS is the Booster
to Storage Ring and SR is the Storage Ring

Linac LTB BO BTS SR
DCCT - - 1 - 2
FCT - 1 - 1 -
ICT 2 2 - 2 -
Beam Flag 5 6 3 6 -
Horizontal Slit - 1 - - -
Vertical Slit - 1 - - -
Button BPM - - 50 - 160
Stripline BPM 3 6 - 5 -
Front-End Photon BPM - - - - 80
Filling Pattern Monitor - - - - 1
Horizontal scraper - - - - 1 pair
Vertical scraper - - - - 1 pair
Tune shaker - - 1 - 2
Tune pick-up - - 1 - 1
Bunch-by-Bunch kicker - - - - 2
Bunch-by-Bunch BPM - - - - 1
X-ray port - - - - 2
Visible light port - - - - 1
Streak camera - - - - 1
Beam Loss Monitor - tbd tbd tbd -
Gas Bremsstrahlung
Monitor - - - - tbd

Most of the diagnostics presented on Table 1 follow the
same development and deployment strategy described in the
next section. The exception are the following systems:

• BPM (Button, Stripline, Photon): the system [11] is
based on MicroTCA.4 with an x86 AMC CPU board
and a CentOS7 operating system. For historical rea-
sons this system, at the time of its inception, did not
have the deployment infrastructure available today. As
such, management is performed manually with a set of
scripts based on parallel ssh connections and remote
bash commands. The plan is to convert it to the herein
described deployment strategy.

• Bunch-by-Bunch (Kicker, BPM): the system is based on
a custom solution by Dimtel [12] with the IOC running
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inside the system itself. Currently, there is no plan to
change the deployment strategy.

• Streak Camera: the system is based on a commercial
solution by Hamamatsu. Currently there is no EPICS
IOC planned for the system neither a change in its de-
ployment strategy.

The remainder of the diagnostics employ a set of commer-
cial and in-house developed equipment + Soft IOCs running
on one of the 8 Dell PowerEdge R230 diagnostics servers.
See [10] for further details.

DEPLOYMENT PRINCIPLES
The adopted deployment strategy was based on the mi-

croservice architecture [13], from which the following prin-
ciples were used to guide the solution and methods chosen:

• Scalability: applications should be scalable, both in the
sense of runtime scalability (e.g., more requests from
different clients), and, more importantly, organization
scalability, enabling different teams working in parallel
with minimal coupling.

• Isolation: applications should be as much isolated as
possible from one another, not relying on the host sys-
tem and relying as little as possible on other services to
be functional. Communication must be done through
well defined APIs.

• Statelessness: applications should not store states and
depend on them. This leads to a more complex design
and should be avoided.

• Repeatability: applications should always be able to
run in the exact same way every time it is deployed or
restarted. This ensures the application can be moved
from one host to another with minimal effort, enhancing
overall system reliability.

DEPLOYMENT STRATEGY
At Sirius, different groups have taken the task of develop-

ing EPICS-based software for the control system, such as:
FECs for the accelerator; middle-layer services for alarm,
monitoring, unit conversion and save-restore systems; high-
level applications for beam dynamics and physics process-
ing; beamline controls and experiment automation. As such,
development strategies, coding standards, deployment meth-
ods, hardware selection and even EPICS modules versions
were inherently different from one another, making it diffi-
cult to standardize a uniform solution.

In order to tackle the problem, an ongoing set of guidelines
and standards is being proposed to help automate the process
and to diminish chances of errors. The workflow depicted in
Fig. 1 gives an overview of the current software development
and deployment status procedures. It was loosely based
on [7].

In Fig. 1, three major groups of tasks can be identified:
VCS, Standards Checking, Build and Tests (in red); Con-
tainer Packaging, Container Testing, Container Repository
(in blue); Description Update, Refresh Nodes (in yellow). In
the next sections these tasks will be described.

Building and Testing
The first four tasks of the workflow defines the basic soft-

ware development strategy taken by the diagnostics group.
All of the developed code is versioned through git, either
hosted in Github [14] or in the internal Sirius Gitlab [15] in-
stance, following the Gitflow [16] methodology of branching
and releasing.

When a developer decides to release a new version of
a software, it must check if it adheres to a set of internal
rules, guidelines and style guide. This is a manual step
of inspecting the code to check for missing dependencies,
error in coding styles, system paths and necessary scripts
for container packaging. Specifically for EPICS IOCs a set
of scripts and support files must be used to serve as the
entrypoint for upper management/packaging software, such
as Docker [17] and systemd [18], both supported for Sirius
diagnostics IOCs.

Finally, the code is built by using a standard build system,
such as: Make [19], CMake [20] or Gradle [21] and tested
against the real equipment or infrastructure.

Container Generation
The next group of tasks is related to the image generation

to be used in the control system (in this context, image always
refer to a Docker image to be run as a Docker container).
The idea of completely isolating the application from the
host system with virtually no coupling between them (with
the exception of a modern linux kernel ≥ 3.10+ and Docker
Engine) was very attractive and suitable to a non-uniform
software development culture.

For that matter, a series of reusable Docker images [22–
25] were built with the purpose of serving as a basis for
other software, specially EPICS IOCs, published on Dock-
erHub [26] and on the internal Sirius Docker Registry [27].
Currently, the images are built using a custom script [28] that
compiles EPICS base and EPICS modules from source for
a variety of Linux distributions, alongside its dependencies.
The usage of Debian packages, particularly the NSLS-II
EPICS Debian repository [29, 30], is being considered as
a replacement of the script. This has the potential of be-
ing easier to use, more reliable as it uses the native Debian
packaging scheme and closer to the EPICS community.

The diagnostics EPICS IOC images will then inherit from
one of the base images (according to its necessity) and build
its dependencies and IOC on top of it. In some special cases,
applications require additional EPICS modules not available
at the base images. Hence, the extra module could either
be built alongside the EPICS IOC application in the same
image or as an additional image on top of the existing ones.
Traditionally, it is preferred to use the later, as it enhances
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Figure 1: Deployment Workflow. In red (VCS, Standards Checking, Build and Tests), tasks that are related to building and
testing a specific control system component. In blue (Container Packaging, Container Testing, Container Repository), tasks
that are related to packaging, specifically containers in this case. In yellow (Description Update, Refresh Nodes), tasks that
are related to deployment.

decoupling and promotes reusability. The current image
hierarchy can be seen in Fig. 2.

Figure 2: LNLS Docker Images Hierarchy.

The most basic image (lnls/epics-deps) contains only a
standard Linux distribution, typically Debian, and EPICS
Base package dependencies, either in the native Linux dis-
tribution package manager or compiled from source, if not
available. The decision of not bundling EPICS base along-
side its dependencies was taken to enhance the reusability
of this image to most of the EPICS base versions. So, in this
way, EPICS base versions 3.14, 3.15, 3.16 and 7.0 could all
inherit from lnls/epics-deps and reuse most of the already
installed dependencies.

The EPICS base toolkit, versions 3.14, 3.15, 3.16 and
7.0, is packaged in image lnls/epics-base with distinct tags
and contains the basic EPICS components and environment
variables needed by all EPICS applications.

On top of that, the most commonly used EPICS mod-
ules by Sirius diagnostics are bundled inside the lnls/epics-
synapps and it contains a customized SynApps [9] distribu-
tion [31]. It removes unused EPICS drivers and modules,
while keeping the most generic ones, such as asyn, alive,
areaDetector, busy, calc, devIOCStats, sequencer, motor
and streamDevice.

The last image is called lnls/epics-dist and it contains
specific Sirius EPICS configuration. In the future, Sirius
specific modules could be bundled in this image, so all IOCs
built from it can benefit.

EPICS modules not contained in the previous hierarchy,
such as the Aravis GigE EPICS module [32], are generally
bundled in a separated image inheriting from lnls/epics-dist.
Then, on top of it, the EPICS IOC can be built separately,
reusing the image. An example of this usage can be seen

in Fig. 3, depicting the Aravis EPICS module and camera
EPICS IOC building on top of the Sirius base images.

Figure 3: LNLS Camera EPICS IOC and an Aravis EPICS
module interaction with the LNLS base images.

Overall, images can grow large in size, as unneeded pack-
ages, files and documentation are kept in intermediate image
layers. On building the described images care was taken
to remove all of the generated artifacts in the same layer as
they are created or using Docker Multi-Stage [33] builds
to copy only the final products. Still, instead of compiling
from source, it is deemed best to use the Linux distribu-
tion packages, such as the EPICS Debian packages from
NSLS-II, to enforce that no intermediate files are kept in the
images. This is considered good practice, even though the
usage of OverlayFS [34] by the Docker engine guarantees
that the disk usage of an image will not increase, but will
be "shared" or overlaid with other images, as long as it uses
the same hierarchy. For instance, having two EPICS IOC
images inheriting from the same lnls/epics-dist image will,
roughly speaking, count as the size of just one lnls/epics-dist
plus the size of the EPICS IOCs images.

Container testing is done to ensure that the software runs
exactly the same as the original version, running outside
the container environment. No automated infrastructure
currently exists for that.

The last task is to push the generated and tested image
to an internal container registry, such as Docker Registry,
so the internal control system network can fetch the image
without relying on foreign network infrastructure.

Deployment
The last group of tasks involves the actual image deploy-

ment to the control system, which can be crucial as care
must be taken to avoid disrupting other software updates
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and subsystems. Before proceeding, one important Docker
detail must be explained.

Docker Network Isolation By default, docker contain-
ers are run with no network ports published to the host system
or the host network. This means that no inbound/outbound
communication is allowed. In order to solve this docker of-
fers the EXPOSE Dockerfile instruction and the runtime -p
option for docker run command (or equivalent) to actually
publish a container port mapped to a certain host port.

This solution, however, only works if a single EPICS
IOC is run at the host, mapping the Channel Access (CA)
EPICS ports 5064/tcp (CA server connection), 5064/udp
(CA search messages), 5065/tcp (CA Repeater process com-
munication), 5065/udp (CA Beacon messages) to the host.
If more than one IOC must run in the same host, EPICS will
randomly choose an ephemeral port for the CA server con-
nection. However, inside the container, the IOC will always
bind to the default ports as it is network isolated from other
containers. This makes the task of publishing the network
ports beforehand non-trivial for the host, as the IOC will em-
bed the default ports in the protocol messages, but the host
will use a distinct mapping. Hence, effectively instructing
the clients to use the wrong ports for communication.

In order to overcome these issues, two options were ini-
tially evaluated: (i) use a port translator service in the
host (similar to a typical NAT service) to dynamically
change the port to/from the host/container; (ii) use the
EPICS_CA_SERVER_PORT environment variable to change
the CA server connection port so each IOC would use a spe-
cific one defined beforehand. These options were deemed
too intricate to maintain, so a simpler solution was adopted
based on the ability of docker to use the same network as
the host (i.e., without network isolation) by using the docker
option --network=host. This effectively solved the issue
as even with the ephemeral ports, clients could correctly use
them. The drawback of this technique is that the network
isolation is effectively bypassed, allowing the container to
use all of the ports on host, diminishing security. Addition-
ally, the steps described in [35] were necessary to ensure that
clients, in either unicast or broadcast CA search message
mode, could reach all of the IOCs on the hosts.

IOC Servers Configuration On Sirius, diagnostics
IOC servers follow the diskless approach, relying on a remote
boot strategy with NFS mounts for each of the servers’ root
filesystem, home and EPICS autosave directories. This en-
sures consistency and repeatability as all of the IOC servers
have the exact same configuration and do not rely on any-
thing not available at the read-only root filesystem.

Specifically, the root filesystem, created by a set of scripts
available in [36], is intended to be minimal and tightly con-
trolled as it affects all hosts.

After successfully booting into the rootfs, a set of systemd
services, bundled within the rootfs, starts all of the config-
ured docker containers for that particular host along with

its runtime parameters. Moreover, hook scripts can further
configure the boot process with additional commands.

An ongoing effort is currently in place to evaluate the us-
age of container orchestration technologies, such as Docker
Swarm [37]. In this way, instead of distributing docker con-
figuration files to all hosts, a Swarm Manager could orches-
trate all of the containers from a single place, centralizing
all of the configuration on the Manager node. As this is com-
pletely independent from the other approach, both can coex-
ist in the same system with any degree of commitment. As of
this moment, two services are successfully running in swarm
mode: Zabbix Agent [38], for gathering statistics about the
running operating system, and Portainer Agent [39], for a
web-interface overview of the node cluster and all of its
running services.

Remote Boot Procedure The detailed remote boot pro-
cedure and related infrastructure are depicted in Fig. 4

Figure 4: Sirius Diagnostics Remote Boot Strategy. The first
step (1) is the IP/Hostname/NTP server assignment to the
hosts plus the location of a TFTP server and NFS server for
PXE boot. The second step (2) is the requisition of the initial
boot image (embedded with the instruction to mount the root
filesystem via an NFS server) to the TFTP server. The third
step (3) is the mount of the root filesystem, hosts’ homes
and EPICS autosave directories. The fourth step (4) is the
fetching of docker images from an internal docker registry.
DNS server is queried in each step to translate domain names
to actual IP addresses.

The first step is the DHCP server discover, in which the
host tries to get a valid IP address. In this case, the hosts are
also configured to receive its hostname, local NTP servers
and the location of the TFTP and NFS servers for usage in
further steps. The docker configuration files can be seen
in [40].

The second step is fetching the initial boot image. This
is achieved by loading a minimal initramfs image from an
TFTP server [41]. After the basic boot steps are completed,
the rootfs is mounted via NFS from an NFS server.

The third step is the mounting of the rootfs. Specifically
for Sirius, the image is created by [36] and exported by a
NFS server configured according to [42]. Along with the
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rootfs, this NFS server also exports the home directories for
all hosts, which specifies the docker configuration files for
all of the EPICS IOCs to be run and its runtime parame-
ters. Furthermore, an EPICS autosave directory is mounted
with read-write permissions, thus enabling EPICS IOCs to
perform the save-restore functionality.

The fourth and last step is the actual download of docker
images from an internal docker registry. After that, the
images are run according to the configuration files, which
specifies, among other things, the Sirius EPICS PV prefixes,
monitoring port numbers and IOC type.

The DNS server is used by all services to translate domain
names to actual IP addresses, so no static IP addresses are
used.

ADVANTAGES AND DRAWBACKS
The overall strategy of employing diskless servers with

remote boot brought assurance and convenient auditing ca-
pabilities that the running system is exactly the one being
exported by the NFS server. Deployment is easilly tested
beforehand as the production base system can be trivially
and consistently replicated. On the other hand, the neces-
sary infrastructure could be argued to be complex, requiring
specialized personnel to maintain it. Nevertheless, as more
systems adopt the same deployment strategy the benefits of
standardization, flexibility and maintenance outweight the
disadvantages over the course of years.

The containerization of IOC applications follows the same
principles of the remote boot strategy and it was a natural
and modern way to package applications easily and reliably,
yet still achieving the wanted microservice architecture prin-
ciples. Moreover, no measurable performance penalty was
perceived by the usage of containers.

One drawback of the container packaging could be pointed
out as the complexity of docker tools either for building the
image and for running the container. At Sirius, experiments
showed that software developers took approximately 2−3
weeks in order to learn docker at the level needed to package
IOCs, create new images and debug containers. With a more
widespread adoption of containers, this is effectively being
absorbed by developers as part of their skill set. Hence,
diminishing the impact of adopting container technologies.

FUTURE WORK
Currently, the docker containers are run in a pull scheme,

in which the hosts pull the docker images from a registry, us-
ing the configuration provided by the exported hosts’ homes.
This effectively shifts the runtime scalability and repeata-
bility to hosts themselves, diminishing the effectiveness of
the overall solution. A more suitable approach would be to
concentrate all of the hosts’ configuration to a single node,
so that it could be better managed, more scalable and mon-
itored. The solution being evaluated is the Docker Swarm
tool that brings these advantages.

Additionally, more automation is required to perform au-
tomatic standards checking against the developed IOC code,

unit and integration tests and continuous integration and
deployment. A typical solution for implementing these De-
vOps tasks is the usage of an automation system, such as
Jenkins [43], which is also under evaluation.

CONCLUSION
In this paper, the current state of the EPICS IOC deploy-

ment for Sirius diagnostics was described from the software
development point of view to the actual container generation
and deployment. The difficulties and the solutions found
were also discussed, such as the docker network interaction
with EPICS dynamic ports. Given the rate of change of
the control system, specially during commissioning, envi-
ronment isolation given by the docker containers and man-
ageability from docker swarm, the diagnostics team is very
satisfied with the overall performance and flexibility, despite
some minor inconveniences: extra steps in packaging the
EPICS IOCs and perceived inability to quickly change the
IOC code, as any changes would need to be repackaged in
the image.

Moreover, the diskless approach used by the diagnostics
servers proved very useful and consistent to provide a re-
peatable environment to all hosts.
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