
GENERALISING THE HIGH-LEVEL GEOMETRY SYSTEM FOR
REFLECTOMETRY INSTRUMENTS AT ISIS

T. Löhnert, A. J. Long, ISIS Neutron and Muon Source, Didcot, UK
J. R. Holt, Tessella, Abingdon, UK

Abstract
At the ISIS Neutron and Muon Source [1], we are cur-

rently in the process of rolling out the next generation
IBEX control system [2] across all beamlines. One class of
beamline we have yet to migrate to the new system is re-
flectometers. These beamlines require equipment to track
the path of the neutron beam to high levels of precision
over various experimental configurations, which results in
a unique set of requirements for the motion control system.
We have implemented a higher level geometry layer re-
sponsible for linking the positions of beamline components
together so that experimental parameters such as the inci-
dent beam angle θ (Theta) are preserved across different
beamline configurations. This functionality exists in the
legacy system, but needed to be re-implemented for IBEX.
The new reflectometry system [3] is written as a Python
server running as part of the server on the local instrument
machine. This paper provides an overview of the architec-
ture of the new system, specifically how it supports the de-
sign goal of making the system easy to extend and recon-
figure while preserving the functionality of the existing so-
lution, as well as an outlook on future plans for a more so-
phisticated motion control system enabled by axis synchro-
nization in real-time.

INTRODUCTION

Figure 1: Schematic of a typical reflectometry beamline.

Reflectometers are complex beasts that require the user
to keep tight control of a multitude of experimental param-
eters in order to achieve the intended results. As control
system developers, we strive to make this process as easy
and intuitive as possible.

In the case of reflectometers, we do this by hiding the
complexity of low-level motor control behind a higher
level parameter layer. We achieve this by linking the posi-
tions of devices on the beamline in physical space so that
when one of them (e.g. a polarising mirror) alters the beam
path, other devices further along the beam automatically
move to track the new path. Currently, the high-level mo-
tion control for our 5 reflectometry beamlines is provided

by the legacy SECI control system through dedicated Lab-
VIEW [4] VIs. This is currently being replaced by the new
IBEX control system based on the open source EPICS
toolkit [5]. In order to support reflectometers in the new
system, we had to replicate the functionality available in
SECI from scratch.

The existing solution under SECI is rather fragmented,
having been extended and changed over the course of many
years to deal with requirements as and when they arise.
Each beamline has its own variation of control interfaces,
scripts and workflows with limited documentation. As
such, we took this as an opportunity to create a generalised
design under IBEX, so that we only have one system that
can then be configured for different beamlines in terms of
the composition and geometry of the beamline, i.e. which
moving parts exist, where on the beamline do they sit, and
what is their range of motion. This has a multitude of ben-
efits: We only need to maintain one system, any improve-
ments to the system are available to all beamlines simulta-
neously, and it helps establish standards and consistency
for all ISIS reflectometers.

In the following sections, we will explore the design of
the reflectometry server under IBEX, and how it achieves
these goals while preserving the workflows the scientists
have developed and grown accustomed to over the course
of ISIS’ many years of operation.

SERVER ARCHITECTURE
Overview

IBEX is implemented in a client-server architecture. In-
dividual devices are controlled by EPICS Input Output
Controllers (IOCs). These IOCs can be run as part of the
server and provide device-specific Process Variables
(PVs), values which can be read or written to over the net-
work using the EPICS Channel Access protocol.

The Reflectometry Server is implemented in python, us-
ing the PCASpy library [6] to expose values and methods
in the code via PV addresses. To the outside, the reflectom-
etry server looks and acts like any other EPICS IOC.

The server’s main function is transforming the positions
of physical motors into higher level parameters that take
the geometry of the beamline and the current path of the
neutron beam into account. The reflectometry server itself
consists of three layers to accomplish this (see Fig. 1). Each
contains a list of items, strictly in order from closest to the
beam source to furthest from it since any change may affect
items further along the beam. The layers are as follows (see
Fig. 2 for schematic):

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA091

WEPHA091
1300

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Figure 2: The architecture of the reflectometry server.

Beamline Parameters
Beamline parameters are the values we expose to users

as PVs to be accessed via the graphical user interfaces or
scripting. Each parameter usually (but not necessarily) re-
lates to one device on the beamline. Parameter values are
always relative to the current incoming beam for the given
device. Types of parameter include device offset from
beam, device angle, or a binary in/out parameter which is
derived from the device position and a given threshold
value. The incident beam angle θ is a special type of reflec-
tion angle, since its value is derived not from a single motor
driving an angle, but rather two positions in a shared 2D-
coordinate system for the sample and the next enabled
component relative to which the sample should be angled.

Geometry Components
The items in this layer, which we call “components”, are

the building blocks of the beamline geometry model. This
layer calculates the beam path, and handles the conversion
of positions between parameter values (positions relative
to current beam) and motor values (positions relative to
straight-through beam). The beamline parameters provide
set point values for the motors from above, and the compo-
site driving layers provides the readback positions for the
parameters from below.

We use various different types of component depending
on the device that is being controlled, which differ in how
they track and affect the beam path. For example, it could
be tracking the 2D-position only, tracking both position
and angle (such that the device stays perpendicular to the
beam), or it could be reflecting the beam thus changing the
beam path for subsequent components. We delve into more
detail on the geometry model in the next section.

Composite Drivers
This layer pushes values into the motor drivers on top of

which the reflectometry server sits. It also contains func-
tionality to apply user-defined corrections to the raw motor
values for known imprecisions due to engineering limita-
tions, as well as some coordination logic to ensure motors
move concurrently such that all moving axes in a given
move finish in time with the slowest axis. For now, the pur-
pose of this simple method of synchronization is to avoid

crashing individual axes into each other. Future plans for a
more sophisticated synchronization approach are described
in the last section of this paper.

All of the above layers are unified within a top-level
“Beamline” object, which maintains an ordered list of
items for each layer and coordinates the interaction be-
tween them.

GEOMETRY MODEL
The model of the beamline consists of the list of compo-

nents that exist in a shared coordinate system. The coordi-
nate system we use is relative to the straight through neu-
tron beam, i.e. the beam as it enters the blockhouse coming
from the target without any alterations to its path. For the
moment, it is 2 dimensional, with y being the height above
the beam, and z being the distance along it (following ex-
isting conventions at ISIS).

Each component in the geometry model has a “zero” po-
sition, which is the position at which they are centred on
the straight-through beam, and a movement strategy (e.g.
linear or along an arc) that defines the range of possible
positions in (y, z) for this component. Each component
forms the relationship between:

• An incoming beam: the beam which will intersect the
component’s movement described by a position in (y,
z) and an angle.

• outgoing beam: the beam after it has interacted with
the component. This becomes the incoming beam for
the next component in the list

• user set value relative to the beam: where the user
would like to position an object relative to the beam
(e.g. 1mm above the beam). This is mainly used to
move an axis across a range of positions in isolation
during beamline alignment

• Motor position: the value of the underlying motor

Figure 3: Processing a mirror angle change on move.

The reflectometry server actually maintains two entirely
separate beam models, one each for the “should” and “is”
state of the beamline. The former is updated every time a
user applies a new setpoint value to a top-level parameter
(i.e. moves that part of the beamline, see Fig. 3), which then
updates the target position in room coordinates at the com-
ponent level, and recursively triggers the same process on
all subsequent components who are subject to the updated
beam path. At the end, these new positions are physically
actuated by the motor drivers. The latter is updated every
time a motor reports a new position, triggered via monitor-
ing processes.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA091

Experiment Control
WEPHA091

1301

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Modes
Beamlines usually have a limited number of standard ex-

perimental conditions users want to easily switch between,
for example experiments using either polarised or unpolar-
ised neutrons. For the former, the polarising supermirror
should automatically move to track the beam and apply an
offset for its reflection angle to the subsequent beam path.
For the latter, the mirror should be parked outside of the
beam and the angle parameter should be ignored when
computing the path. To make it easy to switch between the
two, users can define beamline “modes”, which contain a
subset of all parameters in the configuration, i.e. all those
which should be processed on a move instruction when this
mode is active. They can also contain a set of initialisation
values to move the beamline into a given default position
when the mode is activated.

CONFIGURATION
The reflectometry server is configured through a file

written in Python that is read at start-up. In it, we create
instances of the parameters, components and motor drivers
that exist for this beamline with appropriate geometry in-
formation. This is then collated into a top-level beamline
object, which is what is returned to the reflectometry
server.

The way the architecture is divided into layers allows us
to easily extend the server with different kinds of objects
for each that can be arbitrarily combined. Since, like the
reflectometry server, the configuration file is written in Py-
thon, we (or the users) can even define new classes ad-hoc
to support special types of devices, without having to mod-
ify and deploy the server itself.

Beamline modes are also defined in the configuration
file by passing in a list of active parameters and an optional
dictionary of parameter initialisation values, and are then
passed into the final beamline object.

One of our goals is that scientists should be able to set
up and modify their own beamline configurations. While
providing a lot of flexibility, our current approach of using
a Python file is prone to user error. At the moment, we are
mitigating this by providing a set of helper functions that
help ensure the configuration created is valid, specifically
that items that are created end up being passed into the cor-
rect modes and eventually the top-level beamline object.
Still, it is possible to write configurations that are syntacti-
cally wrong (e.g. typos), or semantically wrong (e.g. non-
sensical component ordering). This is mitigated by the fact
that an invalid configuration gets flagged with an error on
server start-up. Still, configuring the reflectometry server
requires a slight learning curve and is mostly in the domain
of the developer for the moment. In the future we may wrap
this process in a configuration builder abstraction that has
stronger validity checks and automation for building the
boilerplate configuration around the desired items.

INTERACTION
Graphical User Interface

Figure 4: The reflectometry front panel GUI.

The GUI for interaction with the reflectometry server is
implemented as a CS Studio [7] Operator Interface (OPI),
shown in Fig. 4. Since the beamline parameters are acces-
sible as PVs, CS Studio provides all the relevant function-
ality for interacting with these values.

The interface is loosely modelled after the existing SECI
interface. Cornerstone requirements for its design are:

• High information density – ability to see the position
and status of all parameters at a glance.

• Recognizing error states – e.g. by highlighting mis-
matches between target and actual position, or provid-
ing a meaningful message for the overall server status

• Input checking – each parameter has an additional set-
point value that is only displayed but not propagated
to the motor controller until a “move” instruction has
been issued. This allows us to define target values for
the entire beamline, visually confirm they are correct,
then move all relevant axes simultaneously

Scripting
IBEX provides scripting capabilities via a built-in py-

thon library called Genie_Python [8], which contains a
command set that replicates that of the OpenGENIE script-
ing language [9] used in the legacy control system, e.g. for
reading/setting control variables, waiting for certain condi-
tions to be met or starting / stopping data collection. In both
systems, values are usually manipulated via blocks, which
are wrappers around some beamline variable with a user-
defined descriptive alias and logging capabilities. In the
case of IBEX, blocks are created around EPICS PVs. Since
the reflectometry beamline parameters are exposed as PVs
via PCASpy, we can create blocks on these values and in-
teract with them via scripting like any other block in IBEX.

In addition, reflectometers at ISIS make use of an Open-
GENIE scripting library written by the reflectometry sci-
entists specifically for this type of beamline, which in-
cludes commands e.g. to set up the entire beamline for a
run at a given angle for θ, or to change the composition of
a liquid cell containing the sample. While the scripting
commands used by the individual beamlines have a lot of

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA091

WEPHA091
1302

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

commonalities, each have their own version which have di-
verged over time as scientists have made tweaks and addi-
tions to their local command set to better accommodate the
unique requirements or workflows of their beamline. In
IBEX, we have a single script repository that is shared be-
tween all beamlines. We have recreated the most common
commands and refactored them to maximize shared code
between different beamlines. However, discovering the full
breadth of individual requirements is an ongoing process
and we have yet to take an in-depth look at some of the
more complex ISIS reflectometers. As such, the reflectom-
etry scripting library is most likely still subject to change.
However, the goal of supporting all reflectometry beam-
lines through a common scripting library remains the same.

PROGRESS
The new reflectometry server has to undergo rigorous

testing to ensure it performs at least as well as the existing
system before being greenlit for use in production. One of
the challenges we face is that testing time with real neutron
data is limited, since all ISIS reflectometers are in regular
use. So far, we have configured two different beamlines for
the new reflectometry system and have confirmed its be-
haviour against the legacy system in two rounds of testing.
The tests performed include scanning over the abstracted
higher level motion axes, and performing a test experiment
using a sample with known reflectivity properties. We have
confirmed that the beam path tracking capabilities work,
and that the new system provides the necessary workflows
for aligning a beamline and running a simple neutron re-
flection experiment, both through its UI and its scripting
library. The outstanding work on the server is predomi-
nantly in the domain of improving server performance, ro-
bustness and usability rather than functionality.

FUTURE PLANS
The way we collect reflectivity data for a given sample

is to perform runs at different θ, each shifting the range for
the momentum transfer Q for which we record neutron
counts, then stitching the datasets together at the end. Since
the resolution degrades at the edge of the Q range, observ-
ing and stitching the data for more points results in higher
quality results. However, the overhead of stopping / start-
ing data collection in between moving the reflectometry
beamline to its target positions for a given θ limits for how
many different points we can reasonably collect data. What
we ideally would like to be able to do is collect position-
annotated data while the beamline is performing a steady
sweep over a range of θ, which would create “infinite” data
points (in practice, the useful maximum is one per acceler-
ator pulse).

θ being a composite axis, we require truly synchronized
motion axes in order to do this. Currently, coordinated
moves in our system are concurrent rather than synchro-
nous, i.e. there is no guarantee where axes are in relation to
each other beyond the initial move instruction. Instead, we
want motion axes to continually monitor each other and
correct motion in real time if necessary.

The constraint that prevents us from doing this is the mo-
tor controllers currently found on most ISIS beamlines do
not provide the capabilities for such fast synchronization.
However, we expect this to change with a planned roll-out
of a new Beckhoff-based [10] motion control system at the
ISIS facility. These controllers would allow us to run much
of the composite driver level synchronization code on their
embedded real-time operating system instead, opening up
possibilities to perform the continuous scans described
above.

This much more sophisticated method of coordinated
motion control is one of the key motivations for the migra-
tion to the new IBEX control system in the first place. Alt-
hough our first target milestone for the reflectometry server
is to simply replicate the functionality of the existing SECI
system, our work is laying the foundation for such devel-
opments.

REFERENCES
[1] ISIS Pulsed Neutron and Muon Source,

http://www.isis.stfc.ac.uk
[2] K. V. L. Baker et al., “IBEX: Beamline Control at ISIS

Pulsed Neutron and Muon Source”, presented at the 17th
Int. Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS'19), New York, NY, USA, Oct. 2019,
paper MOCPL01, this conference.

[3] IBEX Reflectometry Server,
http://www.github.com/ISISComputingGroup/EP-
ICS-inst_servers

[4] National Instruments LabVIEW,
http://www.ni.com/labview

[5] EPICS Control System Framework, http://www.epics-
controls.org

[6] PCASpy: Portable Channel Access Server in Python
http://pypi.python.org/pypi/pcaspy

[7] Control System Studio, http://www.controlsystem-
studio.org

[8] Genie_Python, http://www.github.com/ISISCompu-
tingGroup/genie_python

[9] S. I. Campbell, F. A. Akeroyd, C. M. Moreton-Smith "Open
GENIE – Analysis and Control" http://arXiv:cond-
mat/0210442

[10] Beckhoff, http://www.beckhoff.co.uk

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA091

Experiment Control
WEPHA091

1303

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

