
FUTURE ACQUISITION ARCHITECTURE
INVESTIGATIONS AT DIAMOND

K. Ralphs, J. Handford
Diamond Light Source, Didcot, UK

Abstract
At Diamond we are reviewing the current stack of in-

house Software Applications that are used to control our
beamline experiments and analyse the data produced by
them. We intend to use this process of analysis and
investigation to formulate proposals for a revised
architecture to address the issues with the existing
architecture, making use of the opportunities presented by
modern technologies and methods, where appropriate. In
doing so we hope to design a more flexible and
maintainable system which addresses technical debt and
functional limitations that have built up over the lifetime of
our current software. This will allow us to go on to
implement a powerful acquisition and analysis system to
be used with the new facilities of Diamond II [1].

THE EXISTING DIAMOND SOFTWARE
ENVIRONMENT

Diamond currently has a well-established stack of
applications developed over many years which provides
users with Data Acquisition and Analysis functionality
from the Controls Hardware interface right up to the live
and offline post processing and visualisation of
experimental data. For organisational and technological
reasons, the Controls, Acquisition and Analysis layers tend
to have been developed by different teams, in some cases
leading to hard boundaries of technological and operational
knowledge.

This often results in the need to find the expert from
another team to progress the diagnosis of problems or
obtain the knowledge of how to access useful information
from a different layer of the stack.

Also, primarily in the Acquisition layer, the software has
grown up organically over a period of 15 years leading to
bad structure, un-needed redundancy, dead code and other
forms of technical debt making it brittle, difficult to
maintain and hard to develop. With the advent of the
Diamond II redevelopment, we want to take a step back to
analyse the software we have at the moment with a view to
designing a new consistent platform architecture to address
these and other problems and to take advantage of current
industry best practises and technologies. In doing this the
intention is to repackage the existing proven functionality
in a more flexible structure behind a common platform API
whilst revising some existing implementations and adding
new capabilities and features along the way. This should
allow us to migrate to a stable consistent platform that is
easier to maintain and support and offers more flexibility
to cross the old boundaries to get to the information
required by the user.

CONCEPTUAL FUTURE
ARCHITECTURE

This initiative is at a very early stage, though we do have
a high level conceptual design on which we are focusing
our technology examinations (see Fig 1).

Figure 1: High Level Design.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA060

WEPHA060
1240

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Common Discoverable Reactive Platform API
The figure shows the adoption of a common ‘Diamond

Platform’ API which would provide access to, and delivery
of, all beamline control, data acquisition and data analysis
functionality, from moving individual motors right up to
reconstructing and segmenting tomography data for
visualisation. Provision of an API like this will open up the
possibility for new and custom clients to be developed for
Diamond’s experimental systems, so it is important that the
choice of API technology is supported by many languages
and environments. In addition, a common API will allow
Diamond’s software groups to address some of the
challenges presented by the current architecture:

• Effective Development Team Collaboration. Using
consistent technology fosters greater working
between teams and simplifies maintenance and
provisioning for IT support.

• Secure Access.
The API will enable Diamond to put security at the
centre of its software stack, allowing Single Sign-On
(SSO) using the user’s FedID and providing proper
Authentication and Authorisation of requests.

• Information Accessibility.
A common API covering all stack layers will facilitate
reuse of elements and data from anywhere within the
stack allowing higher level views to easily get to
underlying information and structures.

• Data Traffic Reduction.
Discoverability reduces data traffic whilst allowing
clients to drill down interactively to gain more context
for the headline data.

• More Responsive User Experience.
Reactivity allows clients that need to, to operate
interactively with live hardware, whilst also providing
a means for feedback of progress of operations or
availability of resources on a non-polled basis for any
client(s) that can consume this.

Direct Communication for Time Critical
Elements

At the Controls layer, it is important that no latency is
introduced in the communication between the API and time
critical elements like PandA boxes [2] and the Malcolm
middleware layer [3]. At this level the API will be
providing the logic design interface to these elements (as
the current custom in-house developed API does) and so
must be able to respond as quickly as possible to allow the
current browser based Configuration Client to function
properly. For this reason, it will be necessary for the
Gateway to be able to route communications directly to the
required consumer when appropriate.

Message Based Backbone with Services
Direct business layer access is not as strong a

requirement for the Acquisition and Analysis layers; here
requests can be serviced on a more command based

timescale. The major issue to address in these layers is the
high coupling (interdependency and intermingling) of not
directly related areas of code; this is hindering efficient
software development and compromising software
maintainability. This is the classic problem of a monolithic
application that has been developed over a long period of
years by many people, where keeping the users’
experiments running has often, necessarily, taken
precedence over good software engineering practice.
Despite this development constraint, we now have a very
well tested application in Diamond’s Generic Data
Acquisition (GDA) software [4], [5] & [6]. GDA is well
understood by users and beamline scientists and so it is
important to maintain familiar proven functionality and
continue to support well-established use cases. This means
that we should be looking to preserve the algorithms that
have been debugged and refined over the years, but present
them in a more flexible and maintainable arrangement
which strips out interdependency and encapsulates
functionality in well-defined blocks that can be
individually built, tested and deployed.

This is a familiar software architectural problem which
is often addressed by adopting a message based micro-
service architecture [7] to replace the old single application
server approach. Microservices is a well-established
pattern in the software industry these days and, though it
has its own challenges (as all architectures do), there has
been much development, debug and test effort invested in
the approach by major organisations over the last 10 years
resulting in a wealth of application and tooling to support
such developments. In addition, adoption of this
architectural pattern would open up possibilities
unavailable in the current acquisition architecture, such as
easy development of functionality in any language, service
management to dynamically replace/supplement
overloaded or failing functional elements, and application
of containerized approaches for potentially streamlining
deployment. For these reasons, this approach seems a
plausible and attractive way of providing an infrastructure
that would allow Diamond to gradually extract and
repackage existing functionality from the current server,
whilst maintaining its availability from the user
perspective.

Testing the Plan
Having arrived at this design Diamond has now begun

to examine the popular frameworks and available
technologies to test if this candidate architecture can meet
our expectations in terms of key requirements and our
assumptions of the functionality they could deliver. We
intend to use the outcome of these investigations to test
whether such an approach is suitable for the many needs of
Experimental Orchestration in the Synchrotron
environment. If this is successful, it will then inform the
decisions which lead to the choice of final technologies for
the prototyping phase which would follow. As part of this
analysis, we will necessarily need to evaluate candidate
technologies and compare their pros and cons to see which,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA060

Experiment Control
WEPHA060

1241

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

if any deliver on enough of our key requirements and how
viable and complex making up the deficit would be.

CANDIDATE TECHNOLOGIES
Because of the ubiquity of micro-service architectures

these days, there are quite a number of potential
frameworks and technologies in this field that offer good
cross language support. In the area of the Platform API
however, the choice is more challenging.

Platform API
The key requirements for an API technology to realise

the Diamond Platform API are:
• Adoption/Robustness. It must be well tested and

have been adopted at scale by major organisations.
• Cross-Language Support. It must be supported

across at least Java and Python, but ideally have
implementations in other languages too.

• Discoverability. It must support discoverability of the
functionality it can provide. This both minimises the
data traffic (since the API itself can be interrogated
rather than having to ship lots of irrelevant content
around) and facilitates higher level functionality
finding out about the operations which serve it from
lower level components.

• Reactive. It must support reactive methods, that is to
say it must allow feedback to clients which subscribe
to updates from server side functionality. This is a key
requirement for the Controls interaction with Malcom
and PandA, but it also facilitates extended
functionality at the Acquisition and Analysis levels as
it removes the need to poll for the status of operations
such as completion of processing jobs and scan
progress, further cutting down API traffic.

• WebSocket Support. It should if possible support
communication over the WebSockets protocol as
currently this is used in Malcolm and PandA
interaction by the existing browser based
Configuration Client.

Currently, the only technology that meets all these
requirements is GraphQL [8] produced by Facebook.
GraphQL was designed to be reactive and discoverable
from the ground up as well as to address some issues of
data transport volume with, for example, Representational
State Transfer (REST). It has now been adopted by several
large online organisations and has reference
implementations in multiple languages plus dedicated IDE
and Browser based tooling.

Gateway/Security Layer
Because of the prevalence of Web based interfaces and

UIs, there are many frameworks in both Java and Python
that provide easy realisation of gateway functionality
incorporating SSO and OAuth2 [9] support. In the Java
sphere the Spring Cloud Framework [10] is a strong
contender providing high levels of standard functionality
for very little developer effort with full SSO and
authentication and authorisation support. In addition to

this, support for Cloud based technologies such as load
balancing and containerization, underpinned with a
Message Based Micro-service architecture is also very
easily achieved. This makes Spring Cloud a strong
candidate given the rest of the planned design. Similar
frameworks exist in python, but given that the vast
majority of the user facing part of the API is likely to be
developed by the Acquisition and Analysis teams, it is
likely that a Java solution would be more suited.

Message Backbone
Here the choice is more open with many heavily tested

cross language messaging frameworks in existence. Of
these ActiveMQ [11] and Kafka [12] are strong contenders.
Both of these can be configured as default options in
Spring Cloud Micro-services installations and ActiveMQ
is already in use in the Acquisition and Analysis teams
providing an early service based implementation, currently
limited in scope. Kafka offers other possibilities, being
targeted at processing of data in transit and having the
ability to replay message sequences in the event of system
failures which could bring new capabilities to the Data
Processing flows within the eventual system.

Other Supporting Technologies
Beyond these obvious contenders, other possibilities

exist for the architectural layers identified and for other
more low-level components which facilitate their use; for
instance both Java and Python have well supported reactive
programing library options which could be utilised to serve
the needs of the API and will probably be used as
appropriate depending on the most suitable language for a
particular component.

CONCLUSION
The need to refresh the Diamond Data Acquisition

Architecture is recognised as a key enabler to the smooth
extension of data acquisition capabilities supporting
Diamond II and in facilitating the adoption of GDA by
other scientific institutions.

The roadmap for a Future Diamond Acquisition
Architecture is at the conceptual stage, with a high-level
outline approach having been proposed.

Currently the Software Groups at Diamond are assessing
the technologies outlined in this paper together with other
possible candidates and are using them to try to build
demonstrator systems with mock services and clients to
flush out all the issues and limitations of each across the
various use cases. This will allow us to make a reasoned
and validated set of decisions before committing major
resource to the prototyping and development phases.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA060

WEPHA060
1242

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

REFERENCES
[1] I. P. S. Martin and R. Bartolini, “Conceptual Design of an

Accumulator Ring for the Diamond II Upgrade”, in Proc.
IPAC'18, Vancouver, Canada, Apr.-May 2018, pp.
4046-4049. doi:10.18429/JACoW-IPAC2018-THPMF008

[2] S. Zhang et al., “PandABox: A Multipurpose Platform for
Multi-technique Scanning and Feedback Applications”, in
Proc. ICALEPCS'17, Barcelona, Spain, Oct. 2017, pp. 143-
150. doi:10.18429/JACoW-ICALEPCS2017-TUAPL05

[3] T. M. Cobb et al., “Malcolm: A Middlelayer Framework for
Generic Continuous Scanning”, in Proc. ICALEPCS'17,
Barcelona, Spain, Oct. 2017, pp. 780-784.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

[4] Diamond Generic Data Acquisition (GDA) software,
http://www.opengda.org/

[5] E. P. Gibbons, M. T. Heron, and N. P. Rees, “GDA and
EPICS Working in Unison for Science Driven Data
Acquisition and Control at Diamond Light Source”, in Proc.
ICALEPCS'11, Grenoble, France, Oct. 2011, paper
TUAAUST01, pp. 529-532.

[6] R. D. Walton et al., “Mapping Developments at Diamond”,
in Proc. ICALEPCS'15, Melbourne, Australia, Oct. 2015,
pp. 1111-1114. doi:10.18429/JACoW-ICALEPCS2015-
THHB3O01

[7] Martin Fowler and James Lewis, Microservices, a definition
of this new architectural term,
https://martinfowler.com/articles/microservi
ces.html

[8] GraphQL open-source data query and manipulation
language for APIs and runtime for fulfilling queries with
existing data, https://graphql.org/

[9] OAuth open standard for access delegation,
https://oauth.net/2/

[10] Spring Cloud framework for building robust cloud
applications, https://spring.io/projects/spring-
cloud

[11] ActiveMQ open source message broker,
https://activemq.apache.org/

[12] Apache Kafka open-source stream-processing software
platform, https://kafka.apache.org/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA060

Experiment Control
WEPHA060

1243

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

