
TANGO CONTROLS BENCHMARKING SUITE∗

M. Liszcz, P.P. Goryl, S2Innovation, Kraków, Poland

Abstract

Tango Controls is a client-server framework used to
build distributed control systems. It is applied at small
installations with few clients and servers as well as at
large laboratories running hundreds of servers talking
to thousands of devices with hundreds of concurrent
client applications. A Tango Controls benchmarking
suite has been developed. It allows testing of several
features of Tango Controls for efficiency. The tool can
be used to check the impact of new developments in
the framework as well as the impact of specific network-
server and deployment architecture implemented at a
facility. The tool will be presented along with some
benchmark results.

INTRODUCTION

Tango Controls [1] can be used at both small and
very large laboratories and scientific facilities. The
efficiency, performance and resource utilization are im-
portant qualities of any control system as they allow
for building large and complex installations which scale
up to thousands of devices and hundreds of clients.
Deploying Tango at large scale requires solutions for
efficient monitoring and evaluation. Ability to assess
the performance, detect regressions and identify bot-
tlenecks is important for developers who work directly
on the Tango Kernel as well as for users and for ad-
ministrators who deploy Tango at their institutes. The
developers need immediate feedback on whether the
changes they made to the source code impact the per-
formance. The administrators need to know how their
hardware and network infrastructure affect the overall
efficiency of the system. The users might be interested
if the performance of Tango improves after an upgrade
to a new version.

To address the need for efficiency monitoring in auto-
mated and controlled way, the Tango Controls Bench-
marking Suite was developed.

BENCHMARKING SUITE

The Benchmarking Suite is a set of tools that facil-
itate the process of evaluating how Tango efficiency
is impacted by qualities like the number of connected
clients or the number of devices hosted in a device
server. The suite consists of: a set of benchmark scripts,
three device servers called target device servers and
a benchmark runner script. A detailed description of
each component is provided later in this section. A dia-
gram showing all the components and relations between
them is is depicted in Fig. 1

∗ Work supported by the Tango Controls Collaboration

Client

Server

Benchmark
Runner

Read Pipe
Benchmark

Client.1 Client.2 Client.N

Python

Python
Python
C++
or Java

Taret
device server

Python
C++
or Java

starts

start starts starts

uses uses uses

starts/
stops

Figure 1: Components of the Benchmarking Suite.

The Benchmarking Suite was designed to be extensi-
ble. This allows users to easily write their own bench-
marks and share them with others to compare the
results.
Source code of the Benchmarking Suite is available

online [2] under the GPLv3 license.

Benchmark Scripts

A set of benchmark scripts, written in Python, is
provided with the Benchmarking Suite. These scripts
implement various test scenarios. There are two kinds
of tests: performance tests which execute some op-
eration in a loop during a given period of time and
efficiency tests for evaluating other aspects Tango. Fol-
lowing performance tests are implemented:

• Attribute Read—counts reads from an attribute,
• Attribute Write—counts writes to an attribute,
• Command—counts command invocations,
• Event—counts event subscriptions,
• Event Push—counts events received at client side,
• Pipe Read—counts read from a pipe,
• Pipe Write—counts writes to a pipe.

The tests listed above can be configured with parame-
ters like test period, number of iterations or number
of parallel operations. The actual work is performed
by the client processes. The users can switch between
clients implemented in Python, C++ and Java. The
benchmark scripts can produce reports in CSV and
reStructuredText formats.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA056

WEPHA056
1224

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



There are two additional tests implemented:
• Attribute Memory—configures multiple dynamic
attributes and measures device server’s memory
consumption (RSS),

• Startup Time—configures multiple devices within
a device server and measures server’s startup time.

Target Device Servers

Most of the benchmark scripts can test arbitrary
devices servers and do not have specific requirements
when it comes to the device interface. In order to al-
low users to compare test results from different Tango
installations, a set of standard device servers was im-
plemented. These device servers expose a well-define
interface which can be consumed by the client processes
of the Benchmarking Suite. The target device servers
provide dummy attributes and commands and do not
require access to any hardware. Users can choose be-
tween device servers implemented in Python, C++ and
Java. The target device servers also provide special in-
terfaces required by some benchmarks, like a command
for reading memory consumption.

Benchmark Runner

The benchmark runner is a script written in Python
that facilitates running the benchmarks. It can read
configuration from a YAML or JSON file, start neces-
sary device servers (possibly on remote host, using the
Starter device), run one or more benchmarks and then
perform necessary cleanup.

Standard Tests

A need for having a set of standard test scenarios
was identified. To fulfil this need a set of well-defined
tests was prepared. Testing the same scenarios with the
same parameters allows users from different institutes
to compare the efficiency of their Tango installations. It
is expected that such a set of tests will promote collab-
oration within the Tango Community and contribute
to building a directory of performance measurement
results which could be used for further analysis.

A set of benchmark runner configuration files defining
the standard test scenarios is available online [3].

TANGO CONTROLS PERFORMANCE

The performance of Tango Controls has been mea-
sured in a series of tests using the Benchmarking Suite.
The test infrastructure and selected test results are
presented in this section.

Test Setup

The tests were conducted on Amazon’s AWS EC2
Platform [4]. All virtual machines were running on
Ubuntu 18.04 (64bit, x86, HVM) operating system.
Following software was installed in the virtual machines:
Tango 9.3.3, PyTango 9.3.0, JTango 9.5.13, MariaDB

10.04. For each test three separate EC2 instances of
various sizes were configured:

• A c5n.2xlarge instance with an SQL database and
a DataBase device server,

• an instance with the benchmark runner script and
a set of client processes,

• an instance with a device server under test.

The instances were connected into a single VPC
network. The test infrastructure is depicted in Fig. 2.

AWS EC2 VPC

client

server

database

benchmark runner
& client processes

device server
under test

MariaDB &
DataBase DS

Figure 2: Test setup in AWS EC2.

Instances of type C5n [5] were used in all the tests.
C5n instances are optimized for CPU-intensive tasks
and offer increased network bandwidth when compared
to the classical c5 instances. The hardware parameters
of different instance sizes are summarized in Table 1.
Regardless of the instance size, the underlying CPU
was always an Intel Xeon Platinum 8124M.

Table 1: Parameters of C5n Instances in AWS EC2

Instance vCPUs Memory Network

c5n.large 2 5.25GiB 25Gb/s
c5n.xlarge 4 10.50GiB 25Gb/s
c5n.2xlarge 8 21.00GiB 25Gb/s
c5n.4xlarge 16 42.00GiB 25Gb/s
c5n.9xlarge 36 96.00GiB 50Gb/s
c5n.18xlarge 72 192.00GiB 100Gb/s

The tests focused on measuring attribute read and
attribute write speed at both the server and the client
side. Each test was configured for 14 iterations. The
number of parallel clients increased gradually, from one
client in the first iteration up to 128 clients in the last
iteration. The duration of each iteration was set to
15 s. Other test parameters were set to default values.
In all tests the device server serialization model was
set to BY_DEVICE.

For server side performance testing, following in-
stances were configured:

• an 18xlarge client instance with client processes
implemented in Python,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA056

Control System Infrastructure
WEPHA056

1225

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



• a server instance of size varying from large up to
9xlarge. Each test was repeated with a device
server implemented in Python, C++ and Java.

For client side performance testing, following in-
stances were configured:

• an 18xlarge server instance with device server im-
plemented in Python,

• a client instance of size varying from large up
to 9xlarge. Each test was repeated with client
processes implemented in Python, C++ and Java.

The test results and the scripts used for running the
benchmarks on the AWS EC2 platform are available
online [3].

Test Results—Server Side Performance

Figure 3 shows the number of read operations per-
formed on device servers running on instances of dif-
ferent sizes. The client was running on an 18xlarge
instance. Both client processes and device server were
implemented in Python, but a similar trend was ob-
served with device servers implemented in C++ and
Java. Figure 4 compares the attribute read performance
between Python, C++ and Java server implementa-
tions on a 9xlarge server instance.

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
re
a
d
o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

large server
xlarge server
2xlarge server
9xlarge server

Figure 3: Number of attribute reads during 15 s,
Python client (18xlarge), Python server (large-9xlarge).

Figure 5 shows the number of write operations for
the same test setup. Also in this case a similar trend
was observed with device servers implemented in C++
and Java. Figure 6 compares the attribute write per-
formance between Python, C++ and Java server im-
plementations on a 9xlarge server instance.

With a large number of parallel clients, both at-
tribute read and write speed increase with the increase
in the number of CPU cores at the server side. Al-
though 72 CPU cores were available at the client side,
running more than 16 client processes does not improve
attribute access speed. Device server implemented in
C++ offers significantly faster attribute access when
compared to Python and Java implementations.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
re
a
d
o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

C++ server
Python server

Java server

Figure 4: Number of attribute reads during 15 s, 18xl
client (Python), 9xl server (Python, C++, Java).

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
w
ri
te

o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

large server
xlarge server
2xlarge server
9xlarge server

Figure 5: Number of attribute writes during 15 s,
Python client (18xlarge), Python server (large-9xlarge).

0

100

200

300

400

500

600

700

800

900

1000

1100

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
w
ri
te

o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

C++ server
Python server

Java server

Figure 6: Number of attribute writes during 15 s, 18xl
client (Python), 9xl server (Python, C++, Java).

Test Results—Client Side Performance

Figure 7 shows the number of write operations per-
formed by client processes running on instances of
different sizes. The server was running on an 18xlarge

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA056

WEPHA056
1226

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



instance. Both client processes and device server were
implemented in Python, but a similar trend was ob-
served with client processes implemented in C++. Fig-
ure 8 compares the attribute write performance between
Python, C++ and Java client implementations on a
9xlarge client instance.

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
w
ri
te

o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

xlarge client
2xlarge client
4xlarge client
9xlarge client
18xlarge client

Figure 7: Number of attribute writes during 15 s,
Python server (18xlarge), Python client (large-18xl).

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128

n
u
m
b
er

o
f
w
ri
te

o
p
er
a
ti
o
n
s
(×

1
0
0
0
)

number of clients

C++ client
Python client

Java client

Figure 8: Number of attribute writes during 15 s, 18xl
server (Python), 9xl client (Python, C++, Java).

Regardless of the number of parallel clients, attribute
write speed is not impacted by the number of CPU
available cores at the client side. Even clients running
on small instances were limited by the server side perfor-
mance. Client processes implemented in Python, C++
and Java offer the same attribute write performance.

Similar results were observed for attribute read per-
formance on the client side.

CONCLUSION

The efficiency, performance and resource utilization
are important aspects of any control system. The
Tango Controls Benchmarking Suite allows for measur-
ing these qualities. The benchmark scripts implement
the most common use cases of Tango like reading from

or writing to an attribute. The target device servers
and the standardized set of test scenarios allow Tango
users to share the results and compare efficiency of
their systems. The benchmark runner makes it easy to
run the benchmark and store test scenarios in simple
YAML files. The extensible architecture of the Bench-
marking Suite allows to implement new benchmarks
easily. More complex test scenarios can be implemented
in the future.

The attribute access is an essential operation for
most of the devices in Tango and shall be performed as
efficiently as possible. A set of tests was conducted to
measure attribute access speed. The tests showed that
the speed at the server side increases with the number
of available CPU cores. In all scenarios, the C++ server
implementation is faster than the Python and the Java
implementations. Running more than 16 parallel clients
does not improve attribute access performance even on
multi-core machines. More tests with a larger server
instances are needed to evaluate the efficiency of the
client side. Also, a detailed analysis of the server side
scalability can be performed to determine the speedup
on a systems with a large number of CPU cores.

It is important to note that the performance figures
are for multiple clients communicating with the same
device server. A Tango Control System can start as
many device servers as it needs in order to scale up
performance. This way almost linear scaling can be
achieved i.e. unlimited scaling is possible as long as
hardware is available to start more device servers. The
only bottleneck is when accessing to the same hardware
(or other resource) which does not support multiple
accesses in parallel.

ACKNOWLEDGEMENTS

The work presented in this paper would not be possi-
ble without the contribution from Jan Kotanski (from
DESY, Hamburg) who worked on the first version of
the Benchmarking Suite and developed most of the
benchmarks. The authors acknowledge Andy Götz
(ESRF) who suggested and made the tests on AWS
possible and for his comments on the paper.

REFERENCES

[1] TANGO Controls, https://www.tango-controls.org

[2] A Tango Controls Benchmark suite, https://github.
com/tango-controls/sys-tango-benchmark

[3] A set of standard tests for Tango bench-
mark, https://github.com/tango-controls/

sys-tango-benchmark-standard-tests

[4] Amazon EC2, https://aws.amazon.com/ec2

[5] Introducing Amazon EC2 C5n Instances Fea-
turing 100 Gbps of Network Bandwidth,
https://aws.amazon.com/about-aws/whats-new/

2018/11/introducing-amazon-ec2-c5n-instances

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA056

Control System Infrastructure
WEPHA056

1227

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


