
WEB EXTENSIBLE DISPLAY MANAGER 2*
R. J. Slominski†, T. L. Larrieu, JLab, Newport News, USA

Abstract
The Web Extensible Display Manager (WEDM) was

first deployed at Jefferson Lab (JLab) in 2016 with the goal
of rendering Extensible Display Manager (EDM) control
screens on the web for the benefit of accessibility, and with
version 2 our aim is to provide a more general purpose
display toolkit by freeing ourselves from the constraints of
the EDM dependency. Over the last few years WEDM has
been extensively used at JLab for 24/7 information kiosks,
on-call monitoring, and by remote users and staff. The
software has also been deployed to Oak Ridge National
Laboratory, and has become more robust as many bug fixes
and contributions have been added. However, adoption
and utility of the software as a general purpose control
system display manager is limited by EDM, which is no
longer actively maintained. A new toolkit can be built on
modern frameworks, fully embrace web conventions and
standards, and support multiple control system data
sources. This new version is a result of a technology
review and selection, and introduces a web inspired display
file format, a web based display builder, new widgets, and
a data interface intended to support pluggable data.

INTRODUCTION
There has been an explosion of interest in control system

displays on the web in the last few years. It has
increasingly become a user expectation for displays to be
available on a variety of devices including smart phones,
and often the web is the best method to deliver this
experience. Our initial version of Web Extensible Display
Manager (WEDM) relied on the ageing Extensible Display
Manager (EDM) to provide a screen builder tool and
editable displays while we added a read-only web
runtime [1]. The primary objective of version 2 is to break
the dependency on EDM and provide an independent web
based display builder. The second version of WEDM is
named Puddysticks, and is shown in Fig. 1. During
development we studied and embraced modern software
frameworks, adopted web paradigms, and implemented a
data source agnostic interface to widgets. We report our
status as we work towards a web based display manager
that serves all devices, whether they be in the control room
or in your pocket.

Figure 1: “Puddysticks” prototype.

A Case for Zero Code
Control systems have a long history of display

managers: Graphical User Interface (GUI) builder tools
that allow non-programmers to create control screens
without writing any code. A display manager provides a
consistent and familiar workflow to users, and the reusable
framework saves software developers from having to
spend time on each new project requiring displays.

A Case for Mobile
According to the Pew Research Center 76% of people in

advanced economies had a smart phone in
2018 [2]. Using mobile devices with control systems is an
opportunity for improved user experience. Remote
monitoring of control systems from desktops may not even
be an option for many as users drop home broadband in
favor of cellular Internet and discontinue personal
ownership of desktops. Besides ensuring staff are always
connected to the control system wherever they are, mobile
devices also provide cheap and readily available access to
numerous additional user interaction mechanisms such as
touch gestures (haptics) and voice commands. Readily
available built-in cameras and GPS may also provide new
opportunities. The best user experience might be for
operators to adjust control system settings via touch or
voice, instead of mouse and keyboard.

A Case for the Web
The web is a well-established standardized cross-

platform way to provide interactive content on nearly all
devices, including mobile devices. Web applications can
work well on devices of varying screen sizes, but do not do
so implicitly, and those that do are often referred to as
having a responsive design. Going a step further,
Progressive Web Applications (PWAs) are web
applications that follow a set of best practices making them

 __

* Authored by Jefferson Science Associates, LLC under US DOE
Contract № DE-AC05-06OR23177
† ryans@jlab.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

User Interfaces, User Perspective, and User Experience(UX)
WEMPR008

1057

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

behave like cross-platform native applications [3].
Features of PWAs include fast loading times, user
notifications, device home screen integration, and offline
capabilities to ensure functionality even with network
disconnection.

Alternative methods for deploying software to
heterogeneous devices is to create a separate native
application for each device type, or use a portable user
interface (UI) framework. Creating a native application for
each device type is costly to build and maintain, but
provides the most flexibility. Portable UI frameworks are
less commonly used than the web and require users to
install software. Google supports the web approach to
cross-platform applications with its PWA initiative, but
Google also is supporting portable UI framework solutions
with its product Flutter. Other portable UI solutions
include Facebook’s React Native, Ionic, and Xamarin. If a
native environment is required, web technologies
can actually be packaged as native applications, using
various tools like Electron (desktop only), Cordova, and
NW.js. Packaging web apps as native apps is one way to
access a native-only Application Programming Interface
(API). However, the main advantage of the web solution
is that it does not require users to install an application on
their device and it is more mature and familiar than
proprietary portable UI frameworks.

RELATED WORK
Custom coding web applications from scratch is time

consuming, but there are strategies for speeding up control
system web development. One strategy for leveraging the
web without the cost of developing a new display manager
is to simply capture and store controls data into a format
already understood by off-the-shelf web visualization
tools. This is the approach taken by Belle2 [4], which
stored EPICS data into a popular time series database
InfluxDB, and then displayed the data using the popular
Grafana web dashboard interface. This approach is
reported as Control System Studio’s main visualization
strategy going forward. However, it may not be the most
storage efficient way in the general case as it may result in
data being duplicated in a control system archiver, plus an
extra time series database instance. Further, the Grafana
interface is limiting as a general purpose controls display.
A similar project exists at SuperKEKB [5], but instead of
duplicating data in a time series database a custom
pvAccess gateway is used. However, the gateway used is
not general purpose and is narrowly focused targeting a
specific client (Grafana), and specific data (Control System
Studio alarms). Another strategy for speeding up web
development is to leverage a web application framework,
of which there are many to choose from.

The web is pervasive, and it is clear that users expect to
be able to interact with control screens on the web, just like
with most everything else today. The web and mobile
have obvious appeal and huge demonstrated interest as
shown in recent projects from the previous ICALEPCS
such as PWMA [6], DashBuilder [7], BNL HTTP
Services [8], NICA Web Access [9], Tango Web

Report [10], MXCuBE3 [11], and MAX IV Web
Services [12]. More recently the Phoebus Display Builder
Runtime [13] was created, and provides a web runtime to
Control System Studio, similar to how WEDM version 1
provides a web runtime for EDM.

TOWARDS A BETTER DISPLAY
MANAGER

Challenges on the Web
Web technologies provide an established and powerful

application environment, yet unique challenges arise.
Security is a top priority on the web unlike in traditional
Supervisory Control and Data Acquisition (SCADA)
environments, and robust solutions already exist for
securing web applications. However, neither portable UI
frameworks nor web applications are as flexible as a native
application because of sandboxing. Sandboxing provides
security: the trade-off is increased security for limited
device access. Unlike a native application, a web
application has neither arbitrary access to a device file
system nor unlimited privilege to create network
connections to remote servers. This is generally a good
thing. The actions web applications can do are carefully
curated, but still include powerful features such as
obtaining geographical location (GPS, cellular, and by IP),
using device camera and microphone, playing sounds and
videos, storing files in a sandboxed area of a device file
system, executing hardware accelerated graphics, reading
local files explicitly allowed by users, and connecting to
other servers explicitly requested by users. One
ramification of this sandboxed environment with respect to
display managers is that arbitrary local scripts cannot
easily be executed in the same way previous display
managers have historically allowed. A better approach
which works with the web, is a client-server model, in
which clients make requests of servers to execute actions
on their behalf. This avoids the issue of relying on the
existence of a script stored locally often requiring a shared
file system.

User vs Developer Ergonomics
There are numerous modern display managers such as

PyDM [14], Control System Studio [15], Inspector [16],
Radar [17], and Taurus [18], and these are just the ones
discussed at the previous ICALEPCS (two of which are
from CERN). However, the existing display managers are
not designed specifically to be portable to various
devices. Further, many display managers differentiate
themselves based prominently on which programming
language they are implemented in. Since the idea with
“zero code” display managers is that users do not have to
write any code, the coding language is less important to
end user experience. However, developer ergonomic
considerations are not without value, and the ease with
which software is maintained and enhanced is important.
Ideally, technology choices satisfy all parties.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

WEMPR008
1058

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Selected Technology
There is an overwhelming amount of choice when it

comes to ways to implement a web display manager: many
frameworks and many technologies to choose between. It
is a considerable amount of research to determine the state
of web technology. We considered technologies with
respect to the basic requirements of user and developer
ergonomics matching that of existing display managers
plus the ability to build and access displays portably. The
ideas and technologies we chose include a compiled
reactive framework, the concept of responsive design, and
the idea of pluggable structured data sources.

Reactive programming? Not so fast! Reactive
programming is popular for user interface development
because it allows developers to use concise declarative
statements instead of verbose and potentially more error
prone imperative programming. The reactive
programming paradigm is convenient because developers
do not need to think as much about explicit state changes
or control flow and instead can focus on program logic.
For example an imperative implementation of a text input
widget would require registering a change event listener
and implementing a call-back method to store the updated
input state into a variable. With reactive programming the
programmer could instead simply indicate that a text input
is bound to a variable and the variable state would then be
automatically updated. The advantage is simpler and
smaller code. As another example if that same variable
content was then to be displayed on a page imperatively a
developer would need to interact with the Document
Object Model (DOM) API to splice the value into the
document as changes occur. Reactively the developer
could instead provide a page template which indicates
where the variable is inserted and the page would be
automatically updated as the variable changes.

 Many popular frameworks like React and Vue
leverage a Virtual DOM and runtime to provide reactivity,
but at a cost. The Virtual DOM provides a declarative
interface to work with, abstracting away the real DOM in
which changes are made imperatively. The problem is web
clients must download large runtimes and must execute
DOM reconciliation routines plus other runtime code
resulting in unnecessary work and slow page load
times. The solution: compiled code. Compile time
reactive frameworks such as Svelte and Solid do not use a
Virtual DOM and instead compile developer friendly
reactive code to optimized imperative statements that
provide all of the developer benefit with minimal runtime
cost and therefore a user friendly experience as well.

Responsive Web Design The idea with
responsive web design is to create a single web page that
works on any device, instead of creating a separate display
per device. Display managers historically have used an
absolute layout in which the display size is fixed and all
widgets on the display have unchanging size and
position. With responsive layout the display size varies
resulting in changes in component size and position. From
a display builder perspective you no longer specify x and y
coordinates and instead think semantically about what you

want to display and let the display manager software deal
with layout.

A responsive web application leverages techniques like
text wrapping, scaling, dynamic grid layouts, media
queries, and flowing/hiding content off screen via
scrollbars, carousels, cards, or tabs. Web browsers contain
powerful layout engines that provide complex responsive
layouts using Cascading Style Sheet (CSS) rules such as
grid and flexbox. Dynamic grid layouts change the
number of columns based on available screen space and
flow content off screen. For example a mobile device will
generally use a single column, while a desktop application
could have a dozen columns. Off screen content is
frequently accessed via vertical scroll, but could also be
accessed via horizontal swipe or could be accessed via tabs
or links. CSS Media Queries allow style rules to be applied
conditionally based on device characteristics such as
screen dimensions or device type. Scaling is another
technique for responsive design, but must be used carefully
because widget size must remain readable on all devices
and making widget size extra-large on large devices may
not be useful. Scaling is best used for maps or diagrams in
which geospatial location is important and users can zoom
to the level of detail they are interested in.

Pluggable Data Widgets can be decoupled from
their data source using the mediator design pattern. With
the mediator pattern an intermediary component interfaces
with the widget and the data source such that widgets and
data sources need not be aware of one another. Widgets
and data sources can be created independently and
integrated using a mediator component. A web display
manager with a pluggable data source interface can be
extended to work with any data source, including a
relational database proxy or an EPICS 7 pvAccess proxy.

PUDDYSTICKS
The second version of WEDM is named Puddysticks,

which means “easy”, because we believe it makes displays
easy to build and use. The source code, documentation,
and a demo can be obtained from GitHub [19]. The
prototype software provides a web based display builder
tool, and an initial basic set of read-only widgets including
a Panel, Label, Indicator, and Gauge. The proof-of-
concept creates and consumes display files in JavaScript
Object Notation (JSON) format, and is built on Svelte, a
reactive compile time library.

Overview
The proof-of-concept currently supports viewing,

editing, and saving display files in a new format created for
Puddysticks with extension .puddy. These files contain the
JSON model that make up a display, and loading and
storing this model is simple and efficient since JSON can
be converted to and from JavaScript objects natively.
Currently files can be opened locally or from a remote
server and can be saved locally. A sidebar can be toggled
into view and provides a tree control for examining and
manipulating the structure of the display file. Nodes in the
tree represent widgets, and they can be selected to reveal

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

User Interfaces, User Perspective, and User Experience(UX)
WEMPR008

1059

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

their properties. Selected widgets can be re-ordered and
removed, and if a container widget named Panel is selected
then other widgets can be added to it. Properties are
exposed in input boxes on a form and changes typed into
the input boxes update the display in real time providing
familiar What You See Is What You Get (WYSIWYG)
capability. New widgets can be added by creating a new
Svelte component and updating the registry file to
reference it.

Data Sources
There are currently three data sources provided, a Static

data source that allows hard-coding fixed values, a
Random Number Generator data source that is useful for
testing and demonstration purposes, and finally an
epics2web data source provides live EPICS data. The
epics2web Channel Access Web Socket proxy server is
reused from WEDM version 1. Data sources can be added
by creating a data source component, updating the registry
file to reference the new data source, and adding a data
provider implementation for each widget that is to
consume data from the new data source. The data provider
is the mediator in the mediator design pattern. It allows a
widget and its data source to be loosely coupled.

The API between a data source, data provider, and
widget consists of JavaScript update events and two
JavaScript objects: a configuration object and a data object.
Each data source accepts a configuration object specifying
metadata such as which channel to monitor. The data
source is then expected to generate JavaScript events
containing data objects. The job of data providers is to
listen for events and translate data objects produced by a
data source into data objects formatted for a particular
widget. In the simple case the data object may contain a
single property named value and the data provider may
simply pass the data object along unchanged.

Styling and Theming
Controlling how widgets look and are arranged can be

controlled via style and theme. Widgets can be styled
individually by directly specifying CSS rules. In addition,
a theme can be chosen to override default widget styles.
The provided default theme follows Google’s Material
Design. The theme is a property of the top level Display
widget. A template exists demonstrating using CSS grid
layout to provide a responsive layout. Using this template,
an example display renders well on both large and small
screens as seen in Fig. 2.

Figure 2: Display with alternate theme on mobile device.

FUTURE WORK
The new display manager is far from complete. New

components need to be added and new data sources
created. There are also many exciting technologies to
watch. At Jefferson Lab we have a test server, but have not
setup a production server yet and we plan on obtaining
feedback from users before moving forward.

Components
There are too many components missing at this time to

replace a mature display manager, but Puddysticks can
supplement an existing one until more components are
available. To expedite component development it may be
most effective to integrate an existing set of widgets
instead of creating all new from scratch. This could be
facilitated using Web Components. Currently there are no
components for making changes to the control system in
the prototype. When input components are added care
must be taken to ensure control system security and
authentication capabilities are in place as well.

Data Sources
 Many options exist for data sources such as custom

relational databases, directory servers, web services, and
additional control system sources. Specifically, integration
with TANGO and EPICS 7 pvAccess are logical future
directions. The quickest path to EPICS 7 is perhaps to
create a plugin for the proxy PV Web Socket as used by the
Display Builder Web Runtime.

Technology to Watch
Web Components Having a standard set of

reusable widgets is a well-known strategy for user interface
design, but how to implement new shared web widgets is
not without issue. The HTML standard itself defines a
small set of standard widgets like button and checkbox that
are recognized by every browser automatically, and Web
Components are an attempt to provide a standard way to
add to the built-in widgets. In 2012 the first draft of the
Web Components specification was published, and it was
motivated by a growing number of component libraries

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

WEMPR008
1060

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

such as Google’s Angular and Facebook’s React. Today
Web Components still are not fully realized and some of
the original specifications have been dropped, such as
HTML Imports and CSS /deep/ combinator.

The main problem with Web Components is they are not
as good as mature JavaScript component frameworks in
many ways. Further, to avoid repeating common code in
each custom widget and to work around limitations with
web components, developers end up factoring out common
code, and in doing so end up creating their own framework
anyway. A home-grown framework is one that is likely not
as well polished as a popular JavaScript component
framework. A third party framework may also provide
other value, such as reactivity, theming, and alternate
composition models. Concerns with Web Components are
numerous and include slow evolution, lack of browser
support, problematic styling of internal component
structure, and unsupported SVG composition. Often a
reactive framework can optionally generate either web
components or plain JavaScript classes. Generating Web
Components may be useful if you intend to share widgets
outside of the project, but in practice web components
often are tied to a particular framework ecosystem and are
therefore not as easily sharable as one may expect.

Web Assembly Web Assembly (WASM) is a
virtual machine bytecode format (not machine assembly as
the name implies) for both client and server applications
including web browsers (but not just for the web). The goal
of WASM is to provide a portable and high performance
compilation target for high level programming languages
such as C++ and Rust. Web Assembly has a lot of
potential, but is not generally a good replacement for
JavaScript at this time. One of the big problems with
WASM right now is that browsers do not include much in
the form of standard libraries built-in, which means if
needed, they must be downloaded by each client.
JavaScript source code is generally smaller because it does
not need to include basic libraries. Further, the interface
between WASM modules and the DOM has historically
been slow, cancelling out many speed improvements
gained from streaming compilation and lower level code.
Many of these issues are currently being resolved however
and even now WASM is a good tool for a specific set of
problems. Web Assembly may be the next big thing, or it
may suffer the same fate as similar solutions from the past
such as Java Applets and Flash, which ultimately were
phased out.

WebAuthn Authentication on the web no longer
requires remembering and typing a long password, often
into a tiny phone screen. With WebAuthn, users can
leverage their fingerprint, face, or hardware key inside a
phone to login. Token-based password-less Single Sign On
(SSO) has existed on local intranets using Kerberos and
SPENGO, but now will be available over the Internet as
well. Web services are often protected by access tokens,
which OAuth will continue to provide, but now the login
form can be replaced with a WebAuthn credential. For a
web based display manager it would be dangerous to have
control system write access always authenticated, because

of the risk of losing your device. However, authentication
could require escalation as is done with web application
leaders such as Amazon – users can be read-only
authenticated, but as soon as the user attempts to make
changes they would be prompted to re-authenticate.

HTTP/2 Pushing data from a server to a client
efficiently has long been done effectively with HTTP/1.1
and Web Sockets, but HTTP/2 may soon be an even better
option. Historically Web Sockets were not supported in
HTTP/2, but web browsers will soon add support [20].
Advantages of HTTP/2 include faster encrypted
connection establishment, faster supporting resource file
download, as well as multiplexed connections. Related
technologies include Server-Sent Events (SSE) and
HTTP/2 Push. The former is unidirectional and not
supported by Internet Explorer, while the latter is only for
resources such as .css and .js files. Another technology to
watch is gRPC, which operates over HTTP/2 and leverages
Google’s binary Protocol Buffers to provide an extremely
efficient and portable protocol between applications. At
this time gRPC is not natively supported in web browsers
and browsers do not expose low level packet details to
JavaScript clients so a JavaScript browser application
cannot communicate at the application level with gRPC.

CONCLUSION
The Web Extensible Display Manager 2 proof-of-

concept demonstrates a promising web based display
manager. Basic functionality such as viewing and editing
web displays have been shown. Many technologies were
researched and tested before a selection was made, and
ultimately three stood out: compiled reactive frameworks,
responsive web design, and pluggable data sources.
Compile time reactive frameworks provide both developer
convenience and the performance users expect.
Responsive web design allows a single display to be used
on devices of varying screen size. Pluggable data enables
choice when it comes to the data source connected to a
widget. Not all technologies that we researched were used,
and many such as Web Components and Web Assembly
warrant our attention as technologies to watch. The new
display manager is useful now, but further work remains to
elevate the prototype to a fully production tool.

REFERENCES
[1] R. J. Slominski and T. L. Larrieu, “Web Extensible Display

Manager”, in Proc. 16th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 852-856.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

[2] Pew Research Center, February 2019, “Smartphone
Ownership Is Growing Rapidly Around the World, but Not
Always Equally.”

[3] Progressive Web Applications,
https://developer.mozilla.org/en-
US/docs/Web/Progressive_web_apps

[4] G. Tortone et al., “Web Based Visualization Tools for Epics
Embedded Systems: An Application to Belle2”, in Proc.
16th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

User Interfaces, User Perspective, and User Experience(UX)
WEMPR008

1061

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

2017, pp. 1857-1860. doi:10.18429/JACoW-
ICALEPCS2017-THPHA181

[5] S. Sasaki, “Web-Based Data Visualization Using EPICS
pvAccess RPC at SuperKEKB”, in Proc. 15th Meeting of
Particle Accelerator Society of Japan (PASJ’18), Nagaoka,
Japan, Aug. 2018. THP099.

[6] L. Zambon, A. I. Bogani, S. Cleva, E. Coghetto, F. Lauro,
and M. De Bernardi, “Web and Multi-Platform Mobile App
at Elettra”, in Proc. 16th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 984-988.
doi:10.18429/JACoW-ICALEPCS2017-TUSH103

[7] T. D’Ottavio, P. S. Dyer, G. J. Marr, and S. Nemesure,
“Creating Interactive Web Pages for Non-Programmers”, in
Proc. 16th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'17), Barcelona,
Spain, Oct. 2017, pp. 976-978. doi:10.18429/JACoW-
ICALEPCS2017-TUSH101

[8] T. D’Ottavio, K. A. Brown, A. Fernando, and S. Nemesure,
“Building Controls Applications Using HTTP Services”, in
Proc. 16th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'17), Barcelona,
Spain, Oct. 2017, pp. 1320-1322. doi:10.18429/JACoW-
ICALEPCS2017-THMPA06

[9] G. S. Sedykh, V. G. Elkin, and E. V. Gorbachev, “Tango
Web Access Modules and Web Clients for NICA Control
System”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'17), Barcelona,
Spain, Oct. 2017, pp. 806-808. doi:10.18429/JACoW-
ICALEPCS2017-TUPHA167

[10] M. Broseta, A. Burgos, G. Cuni, D. Fernandez-Carreiras, D.
Roldan, and S. Rubio-Manrique, “A Web-Based Report
Tool for Tango Control Systems via Websockets”, in Proc.
16th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct.
2017, pp. 826-829. doi:10.18429/JACoW-
ICALEPCS2017-TUPHA173

[11] M. Oskarsson et al., “MXCuBE3 Bringing MX Experiments
to the WEB”, in Proc. 16th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS'17),
Barcelona, Spain, Oct. 2017, pp. 180-185.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

[12] A. Milan-Otero et al., “Usage and Development of Web
Services at MAX IV”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 1826-
1830. doi:10.18429/JACoW-ICALEPCS2017-THPHA170

[13] K. Kasemir, “Display Builder Web Runtime”, EPICS
Collaboration Meeting June 2019,
https://indico.cern.ch/event/766611/contribu
tions/3438289/

[14] G. S. Fedel, D. B. Beniz, L. P. Do Carmo, and J. R. Piton,
“Python for User Interfaces at Sirius”, in Proc. 16th Int.
Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
1091-1097. doi:10.18429/JACoW-ICALEPCS2017-
THAPL04

[15] K.-U. Kasemir and M. L. Grodowitz, “CS-Studio Display
Builder”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS'17), Barcelona,
Spain, Oct. 2017, pp. 1978-1981. doi:10.18429/JACoW-
ICALEPCS2017-THS303

[16] V. Costa and B. Lefort, “Inspector, a Zero Code IDE for
Control Systems User Interface Development”, in Proc.
16th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct.
2017, pp. 861-865. doi:10.18429/JACoW-
ICALEPCS2017-TUPHA184

[17] O. O. Andreassen, R. M. Knudsen, and J. W. Rachucki,
“Radar 2.0, a Drag and Drop, Cross Platform Control
System Design Software”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 1873-
1876. doi:10.18429/JACoW-ICALEPCS2017-
THPHA185

[18] C. Pascual-Izarra et al., “Taurus Big & Small: From Particle
Accelerators to Desktop Labs”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 166-169.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

[19] Puddysticks,
https://github.com/JeffersonLab/puddysticks

[20] RFC 8441, https://tools.ietf.org/html/rfc8441

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR008

WEMPR008
1062

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

