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Abstract 
This paper presents the development of the MELT (Mini 

ELT) Control System, to be used for testing and validating 
key functionalities of the Extremely Large Telescope 
(ELT) during AIV/commissioning and operation phase. 
MELT is an optical test bench with a turbulence generator, 
whose main objective is to deploy and validate the Central 
Control System (CCS) and the Wavefront control strate-
gies. The subsystems under control are: a segmented pri-
mary mirror, a secondary mirror on a hexapod, an adaptive 
fourth mirror, a fast tip/tilt mirror, phasing sensor, a light 
source, a Wavefront sensor, a IR camera, together with 
their control interfaces that emulate the ELT conditions.  
The CCS integration layer, the Core Integration Infrastruc-
ture (CII), will be deployed to MELT for their verification 
and testing strategy, producing feedback to their require-
ments and design.  

This paper describes the Control SW distributed archi-
tecture, communication patterns, user interfaces and SW 
infrastructure. The control algorithms are being developed 
separately and will be integrated into the control loop via 
MATLAB script API. 

INTRODUCTION 
MELT is a table-top emulator of the ELT (see Fig. 1), the 

European Extremely Large Telescope, the next generation 
Telescope developed by ESO [1]. It will be used for testing 
and validating key functionalities of the ELT, during the 
periods of system verification, wavefront control commis-
sioning, through the handover to science, up to regular di-
agnostic, monitoring, or validation tasks during operations.  

 
Figure 1: MELT optical test bench layout. 

 

Another expected outcome of MELT would be to pro-
duce and validate requirements for the phasing and diag-
nostic station (PDS) of the ELT.  

The MELT Control System (CS) Architecture follows 
the principles of the ELT Control Software and its Com-
mon Development Standards. Basically, the system is di-
vided into hierarchical layers, i.e. into individual control 
systems associated with Telescope subsystems, collec-
tively termed Local Control Systems, and the system that 
integrates these, termed the Central Control System. There 
are several products that have already been integrated 
within the bench: The network infrastructure (physical and 
data link layer interfaces); the messaging protocols  
through  Core Integration Infrastructure (CII) middleware 
abstraction layer (MAL); the Instrument Control Frame-
work (IFW); and the ELT Development Environment.  The 
overall Software counts more than 550 files and 65K LOC, 
split in different programming languages, e.g.: C++/C 
(35K), Java (27K) and Python (11K). 

SYSTEM DESCRIPTION 

General Layout 
MELT has been used as a precursor to the definition of 

user requirements, functional analysis, and define the most 
relevant functions. The CS block diagram (Fig. 2) describe 
the components functions throughout the optical path. 

• Source: Laser driven incoherent white light in the 
wavelength of 500-1700nm, though a 25um multi-
mode fiber. 

• M1 active segmented mirror: consisting of 61 seg-
ments, each driven by 3 piezos to control piston, tip, 
and tilt with a free mechanical stroke of 15 um for 
wavefront control. 

• M2 hexapod: hexapod is a compact 6DOF parallel 
kinematics system for the positioning and adjustment 
of precision elements with a resolution of 50 nm 

• M4 Deformable mirror: ALPAO 277 actuator deform-
able mirror with a clear aperture of 24.5 mm, based on 
electro-magnetic actuators. 

• Sensor arm: Fast tip/tilt (M5) and VIS imager, SCAO 
SH WFS 256x256 pixel with 207 um lenslets, 16 x 16 
subapertures on a 3.3 x 3.3 mm pupil.  

• IR Path: Before entering the IR path, the beam passes 
by the pupil stabilization tip/tilt mirror, with a fast full 
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Figure 2: MELT CS block diagram. 

 
frame readout performed by a 240x320 pixel IR cam-
era. 

• SH Phasing: Reused WFS (called SHAPS) with addi-
tional optics to adjust to the lenslet array. Additionally 
an automated calibration source and filter wheel is 
part of this path. Finally, a TCCD from the VLT pro-
gram, with 512 x 512 pixels The entire M1 will be 
visible on the detector. 

• Motors and Power control: Interface to two Beckhoff 
PLC, mostly restricted to moving motors of transla-
tion stages or filter wheels.  

CONTROL SYSTEM IMPLEMENTATION 

Control System Goals 
Apart from the validation of the control algorithms, 

MELT aims to facilitate the validation of core SW products 
and technologies baselined for the ELT Control System. In 
order to do so, MELT will 

• provide Ethernet based interfaces, between the CCS 
and the subsystem control systems, in-line with ELT 
(OPC/UA[2]), MUDPI, DDS[3], ZMQ[4] and protocol 
buffers[5]).  

• Use the ELT Software development environment, 
Network infrastructure architecture and Time Refer-
ence System. 

• Include Core Integration Infrastructure SW products 
as they become released, i.e., Middleware abstraction 
layer, Configuration, Online database, Telemetry and 
Alarm system. 

• Include Instrument Framework (IFW): developed by 
ESO and intended as toolkit to help instrument devel-
opers to implement their control systems. It includes 

a set of PLC standard libraries controlling common 
devices (motors, lamps, shutters, sensors, ADCs). 

• Enable closed loop and distributed control across sub-
systems (e.g. between wave front sensors and mirror 
control systems). 

• MELT does not include any of the aspects of the tele-
scope safety system. 

Future Goals 
• Integrate TREx: sub-assembly of the ELT Control 

System, that manages the communication infrastruc-
ture between the control equipment and the distrib-
uted real-time computers (at instrument side) 

• Integrate new CII products, e.g., Online Database, 
Configuration, Alarm system and Telemetry service 

Software Architecture 
MELT control Software comprises multiple applications 

that run the required logic to command and measure the 
different devices. Due to the diverse nature of these de-
vices, a wide set of programming languages and computer 
architectures are used.  

The Software stack is designed so that they all use a mid-
dleware abstraction layer (MAL, part of CII) that enables 
the exchange of commands/measurements via ZPB, DDS 
or OPC/UA for three programming languages: Java, C++ 
and Python. Figure 3 shows the layered stack and main 
components. 

PLC controlled devices share the so called Instrument 
Framework to be accessed via OPC data Access and RPC 
paradigms. IFW standardize the PLC libraries used for 
common devices, such as lamps, motors or timers. Addi-
tionally, it also offers a nice GUI where all devices are 
shown and operated. 
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Figure 3: MELT control system SW stack. 

Multiple Threaded Real Time Python Image 
Viewer 

A Real time display viewer has been developed as a Py-
thon tool to view the images provided by the three cameras 
(SHAPS, Xenics IR, and Lumenera WFS). The program is 
multithreaded, splitting the processing of the: 

• Reception of MUDPI/RTMS packages 
• Unpacking of packages and image composition 
• Display of images: OpenCV[6] was used to finally 

achieve a frame rate >30Fps 

WFS and IR Camera Control 
Three states (Idle, Configuring, Acquiring) handle the 

way the camera is controlled. 
• Idle: Initial state. In the entry function it initializes the 

camera, and dumps its properties. Then waits until an 
event is dispatched. It reacts to the events. 

• Configuring: Used to set any of the available proper-
ties of the Xenics camera 

• Acquiring: It acquires N images from the camera. 
In order to do an end-to-end control, two modules are 

required (Fig. 4). 
 
Matlab user interface: subscribes to the images being 

published through MUDPI, and waits for N images to be 
received. After the N images are received, they are stored 
in an array. For receiving the housekeeping and sending 
commands, meltccs module is used. Meltccs: Initially 
waits until it receives TM from the camera. Upon TM re-
ception commands can then be sent. 

Camera LCS: Initially program creates three threads: 
a. State Machine and camera control: enters into idle 

state and searches for a camera attached. Once the camera 
is found, its properties are dumped. 

b. Command subscription: Waits until a command is re-
ceived. Acquisition command triggers the camera thermal 
control (only for IR camera) during acquisition. 

c. Telemetry publishing: As soon as the camera is initial-
ized, the program sends telemetry (1Hz) 

  

 
Figure 4: Sequence diagram for camera control. 

MELT Graphical User Interface 
An engineering graphical user interface (Fig. 5) has been 

developed to help the operator maintain or improve the sys-
tem. It is based on QT [7], using the tab widget, and sepa-
rates into several threads the display, the publishing of 
commands and the subscription to the housekeeping meas-
urements. 

 

 
Figure 5: MELT graphical user interface. 

It provides the operator with mechanisms to send low 
level commands, and sets of setpoints, when applicable. 

Matlab User Object Oriented API 
The Matlab interface permits interaction with the control 

system once it is fully available. The interface provides 
some functions to initialize certain subsystems. The opera-
tor GUI and user scripts are used to bring the desired sub-
systems of MELT to a state where they are available, after 
which the Matlab interface is usable. Availability is on a 
subsystem basis and the Matlab interface may be used in 
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whichever subsystem are available, while others may be 
down/offline. 

The basic principal is that an object may be created for 
each subsystem, and the operations (sending requests or 
reading measurements) are available as  methods of the 
command. 

The basic object life cycle is: 
- Initialize MATLAB session (melt_init)  
- Create the object 

>> m4=melt_m4; 
- Connect to the subsystem 

  >> m4.connect; 
- Interact with the subsystem 

  >> m4.status; 
  >> m4.sendSetPoints(array); 

- When finished, disconnect from the subsystem 
  >> m4.disconnect 

Melt_init is the first command to be called, and it is 
called once only per Matlab session. This command sets up 
the java environment, identifies the network card con-
nected to the MELT network, and sets up various commu-
nication middleware variables.  

Many (ideally all) commands are interruptible if they do 
not conclude in a short time. There are no long-running 
commands. Commands may not return promptly when the 
control system software is not running. Ctrl-C may be used 
to interrupt such commands. 

Network Infrastructure 
MELT network infrastructure (Fig. 6) uses the architec-

ture baselined for ELT. The LAN closely follows the tele-
scope LAN design, with the Nexus switch planned for the 
Service Connection Points (SCP) in the field, and con-
nected back to the computer room via single mode optical 
fibre. some characteristics are: 

• SCP switch: IE4010: high-performance non-blocking 
switching capacity with 28 Gigabit Ethernet ports 

• IGMP snooping enabled: listening to Internet Group 
Management Protocol (IGMP) network traffic to con-
trol delivery of IP multicasts 

 
Figure 6: MELT switch layout. 

To avoid accidental multicast flooding on the ESO net-
work a Linux gateway is configured such that all outbound 
multicast can be blocked. The gateway Linux instance will 
be run as a VM one ESX server. 

Infrastructure and Deployment 
MELT Control System is deployed in a distributed envi-

ronment comprised of different servers and machines (Fig. 
7): 3x Dell PowerEdge r330 16RAM, XEON® CPU E3-
1270 3.8Ghz: 1xCentOS 7.4, 1xCentOs7.4 with RT patch, 
1xWindows, VME crater for the M1 LCU, 2x Beckhoff 
CX2030 PLC, 4xVLT like LCUs. 

The two Linux hosts run the ELT Linux development 
Environment [8], comprised of: 

- Support for C/C++, Java, Python programming lan-
guages and QT5. 

- Build system: WAF 
- Unit tests: googe tests, nosetests, testing 
- Integration tests: Robot Framework 
- Continuous integration: Jenkins 
- OS: Linux CentOS7.4 
 
Each PLC run TwinCAT3, which is a realtime kernel and 

development environment from Beckhoff automation, and 
implements I/O communication through EtherCAT, and 
has a motion module taking care of the calculations for the 
different axis doing motor control. 

 
Figure 7: CS Infrastructure and deployment view. 

Communication Patterns 
As in ELT Control System, two communication patterns 

are used: publish/subscribe and request/reply, then they are 
mapped to the underlaying communication middleware 
software stack, all abstracted within the Core Integration 
Infrastructure Middleware abstraction layer (Fig. 8). 

 

 
Figure 8: MELT communication stack 

  
Specifics of the MELT’s usage of MAL: 
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• publish/subscribe via  DDSMAL: Specific QoS librar-
ies and profiles created for setting reliable_reliabil-
ity_qos (DDS will attempt to deliver all samples in its 
history. Missed samples may be retried) and transi-
ent_local_durability_qos (can be delivered to any po-
tential late-joining) properties. 

•  
• Request/Reply via OPCMAL [2]: Usage of Remote 

Procedure Calls (RPCs) allow MELT CS to control 
e.g. the PLC controlled motors or Flipper stage tip tilt.  

• Publish/subscribe via MUDPI MAL: Multicast UDP 
Interface (MUDPI) contains no transaction or session 
requirements, it is little more than a standardized 
wrapper for UDP payloads with some additional con-
straints. This very simplicity, however, is one of its 
key requirements, making it suitable for use in Ether-
net-based distributed control loops and high perfor-
mance interfaces of the ELT Control System across 
languages and architectures 

Additionally, Real-Time MUDPI Stream (RTMS) proto-
col is used for the exchange of images between the cameras 
and the MELT abstraction layer. RTMS is a low-latency, 
deterministic communication meant for the Adaptive Op-
tics (AO) Real-Time Computer (RTC) Hard Real-Time 
Core (HRTC) of the ELT. 

SYSTEM PERFORMANCE 
Several equipment running at different rates are inte-

grated in the bench. The control loop runs subsystems at 
different rates, collecting observable data at frequencies up 
to 1KHz. The most demanding devices, in terms of perfor-
mance required, are the ASM and M4DM. ASM perfor-
mance test measurements show that the difference between 
the expected send time and the actual one is 0.1uSec.  

Regarding the deformable mirror, it is shown in Fig. 9, 
the latency of 130 us from first byte reception to the appli-
cation of setpoints, with the system running at 1KHz. Im-
age is obtained with an oscilloscope. 
 

 
Figure 9: M4 setpoint application performance. 

CONCLUSION 
We have presented the Control system and detailed Soft-

ware design, used for the MELT project within the EL pro-
gram. Similarities (technology wise) to the ELT control ap-
proach has been shown and discussed. MELT is now ready 
to be used to develop the design strategy for the PDS and 
will in the future help to derive its technical specifications. 

With its capability to adapt to other wavefront control 
strategies, MELT enables us to find the best starting strat-
egy, when this task is to be used at the ELT. In addition, the 
central control system of the ELT can already now interface 
with real hardware and validate software work on the 
bench that is outsourced. Over the following years, the pre-
sented design will most certainly not stay static, but exhib-
its changes to the needs that result from the usage of MELT. 
We hope that this learning experience will help us prepare 
for the ELT commissioning, as discussed at the beginning. 

ACKNOWLEDGEMENTS 
The authors would like to thank the entire APE team for 

their work, which provides the grounds used to extend on 
with the present project. Additionally, the support received 
from the CII and IFW Software development teams has 
been of great help, and has allowed a successful procure-
ment of the MELT Control System. 

REFERENCES 
[1] T. Pfrommer et al., "MELT: an optomechanical emulation 

testbench for ELT wavefront control and phasing strategy", 
in Proc. SPIE 10700, Ground-based and Airborne Telescopes 
VII, no. 107003F, Jul. 2018.  

[2] OPC Unified Architecture,  
https://opcfoundattion.org/about/opc-technol-
ogies/opc-ua/ 

[3] Rti DDS, 
https://community.rti.com/rti-
doc/500/ndds.5.0.0/doc/html/api_java/in-
dex.html 

[4] ZeroMQ, https://zeromq.org 

[5] Protocol buffer, 
  https://developers.google.com/protocol-buf 

[6] OpenCV, 
 https://pypi.org/project/opencv-python/  

[7] QT framework, https://www.qt.io/ 

[8] F. Pellegrin, and C. Rosenquist, “The ELT Linux Develop-
ment Environment”, in Proc. 16th Int. Conf. on Accelerator 
and Large Experimental Control Systems (ICALEPCS’17), 
Barcelona, Spain, Oct..2017, 

  doi:10.18429/JACoW-ICALEPCS2017-THBPL05

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL006

WEMPL006
1014

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems


