
A TECHNOLOGY DOWNSELECTION FOR
SKA USER INTERFACE GENERATOR

M. Canzari∗, INAF - Osservatorio Astronomico d’Abruzzo, Teramo, Italy
V. Alberti, INAF - Osservatorio Astronomico di Trieste, Trieste, Italy

P. Klaassen, M. Nicol, S. Williams, UK Research and Innovation, Edimburgh, UK
H. Ribeiro, FCUP (CICGE) Centro de Investigação em Ciências Geo-Espaciais, Porto, Portugal

S. Valame, Persistent Systems, Pune, India
V. Hardion, F. Bolmsten, H. Petri, Max-IV Institute, Lund, Sweden

Abstract
The Square Kilometre Array (SKA) project is an interna-

tional collaboration aimed to design and build the world’s
largest radio telescope, composed of thousands of antennae
and related support systems, with over a square kilometre
of collecting area. In order to ensure the proper and unin-
terrupted operation of SKA, the role of the operator at the
control room is crucial and the User Interface is the main
tool that the operator uses to control and monitor the tele-
scope. During the current bridging phase, a user interface
generator has been prototyping. It aims to provide a tool for
UI developer to create an own engineeristic user interface
compliant with SKA User Interface Design Principle and op-
erator and stakeholder needs. A technology downselection
has been made in order to evaluate different web-solution
based on TANGO.

INTRODUCTION
Square Kilometre Array (SKA) [1] is a project which as-

pires to build the biggest radio telescope in the world. It is
composed of two arrays of radio-telescope: SKA1-LOW,
consisting of about 200,000 dipole antennas that operate in
the frequency range ranging from 50 to 350 MHz in Aus-
tralia; SKA1-MID, composed of 197 dishes, covering fre-
quencies from 350 MHz to 14.7 GHz, in South Africa. SKA
General Headquarter is located in the UK. In order to ensure
proper and uninterrupted operation, the experience and the
skills of a human operator play a central role in controlling
and monitoring a complex facility like SKA. Graphical User
Interface (GUI) is the main tool the permits to the user to
carry out such system control operations. Currently, the
SKA project is in the bridging phase, the period between the
Design Phase and the Construction, scheduled for the last
quarter of 2020. The aim of this phase is to mitigate the risks
raised during the Critical Design Phase and to develop early
prototypes to adopt during the Construction phase. Consid-
ering the importance of the user’s role and user interfaces,
a downselection of the GUI technology has been necessary
for this period.

USER INTERFACE
A large radio telescope like SKA is composed of several

like electronic, mechanic, computer hardware and software
∗ matteo.canzari@inaf.it

components, which work in coordination with each other to
carry out a high number of complex operations. The role
of the operator is crucial during the monitor and control
of the facility, in order to maximize the observing time,
minimize the overhead and operational cost. GUI is the only
tool available to the operator in performing such monitor
and control operation and in collecting information useful
for decision making. Considering the importance of the
operator, SKA adopted the User-Centered Design (UCD) [2]
Approach during the Design Phase. UCD is a process in
designing and developing User Interfaces focused on the
users, that has the aim to develop UIs that satisfy consumer’s
skills and expectations. The UCD process is summarized in
the following diagram (Fig. 1).

Figure 1: User Centered Design process diagram.

The outcome of the analysis, the result of a series of inter-
views with SKA-precursor control room operators, can be
summed up in a list of requirements [3] to take into account
during the technological downselection:

• scalability
• integrated tools
• extendability
• completeness
In addition, during the Bridging Phase, SKA stakeholders

required other functional and non-functional requirements.
In particular:

• full compatibility with Tango Controls [4], the control
framework adopted by SKA for the whole telescope

• adoption of open-source software, in order to share
with the Tango community problems and solutions

• web-based software, in order to exploit the accessibility
and deployability features of a web application

Starting from the requirements defined during the Design
and Bridging phase, a SAFe [5] team has been formed in
order to choose and develop a user interface generator to

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL005

WEMPL005
1006

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



create engineering user interfaces that operators can use
during the first period of the Construction of SKA. This
prototype consists of a tool that engineers can use to generate
and customize simple user interfaces. It needs to be intuitive
to its users, without requiring a software background, or
explicit knowledge of the underlying UI framework. It runs
in the browser (to make it accessible) and it presents a rich
and flexible interface.

In the Tango ecosystem, there are two software to evaluate
in order to select the one that best fits SKA operators’ needs
and expectations: Waltz (proper TangoWebApp) and Wijive

WALTZ
Waltz (proper TangoWebApp) [6, 7] is a framework cur-

rently supported by the Tango collaboration. It emerged
from a collaboration between several partners in the TANGO
Community to implement a standard TANGO web platform
designed to interact with the TANGO REST API [8]. It con-
sists of a single page web application hence it uses standard
technologies stack and a Model-View-Control pattern.

In the diagram below (Fig. 2), an overview of Waltz
architecture has been shown.

Figure 2: Waltz architecture diagram.

Waltz implements a layered architecture. On the bottom,
there is a layer with primitives that provide API to Tango
REST i.e. transport layer. On top of the transport layer
resides a Platform API layer i.e. non-UI primitives (models,
controllers) that provide high-level API to Tango REST. On
top of the Platform API layer, Waltz has a bunch of smart
components.

In the diagram below (Fig. 3), the technologies involved
in Waltz have been shown.

On top of jmvc [9] webix [10] is used for UI widgets
and application graphical layout. Webix is one of the best
JavaScript UI libraries alternative to JQueryUI nowadays.
Finally, plotly.js [11] is used for plotting all kinds of graphs
within the application. All the libraries are open source.

WEBJIVE
WebJive [12] is an experimental framework developed by

the MAX-IV institute. It consists of a React-based [13] client,
which communicates with a Max-IV developed GraphQL
[14] server, named TangoGQL.

Figure 3: Waltz Technologies stack.

In the diagram below (Fig. 4), an overview of WebJive
architecture has been shown.

Figure 4: Webjive architecture diagram.

Webjive permits to explore Tango devices and to create
custom dashboards, using a collection of widgets. it accesses
to the Tango Controls Framework through tangogql. The
communication between webjive and tangogql is managed
by a library into webjive. tangogql is a GraphQL interface for
Tango. In order to send command and save dashboards, it is
necessary to login to the system. webjive uses webjive-auth
to manage users. webjive-auth accesses to LDAP repository
or JSON file to retrieve user information. The dashboards
created by the user logged into the system, are stored in a
MongoDB database through the dashboard-repo application.

In the diagram below (Fig. 5), the technologies involved
in Webjive have been shown.

React is a JavaScript library for building user interfaces
that guarantee to be fast, scalable, and simple, maintained
by Facebook. Redux [15] is a predictable state container
for JavaScript apps that permits to easily manage the state

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL005

User Interfaces, User Perspective, and User Experience(UX)
WEMPL005

1007

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: Webjive architecture diagram.

of on application. aiohttp [16] is an asynchronous HTTP
Client/Server for asyncio and Python. GraphQL is a query
language for APIs, that gives clients the power to ask for
exactly what they need and nothing more, makes it easier
to evolve APIs over time, and enables powerful developer
tools.

TECHNOLOGY DOWNSELECTION
Once identified the technologies involved based on re-

quirements, a list of valuation criteria has been defined. In
particular, different types of scenarios that typically emerged
when working with any technology has been considered.
From scenarios, a set of neutral measures for what would
count as a reasonable expectation for a platform or technol-
ogy have been derived, and what the result would make using
that technology unworkable, or at least make it significantly
difficult for the developers to be able to deliver. The result
of the analysis, divided by scenarios, is summarized in the
following paragraphs.

Stages of Maturity
The two frameworks have different aims and are at differ-

ent stages of maturity.
Waltz is a mature and established framework that makes

it easy for developers, or those with software experience
to create interfaces to TANGO systems. It is essentially a
framework for developing fixed GUIs. It relies on a core
set of widgets taken from other JavaScript libraries. The
developer defines the layout of the GUI as part of the code in
a way that would require either manual coding or an external
tool, or further coding within the prototype to allow users to
manipulate the layout of the widgets.

WebJive is a less mature framework, but one that is closely
aligned to the type of ‘Taurus [17] like’ dragging and drop-

ping of widget components into a view. Its equivalent wid-
gets are React components.

Extending Waltz would require developing the code to
allow users to ‘drag and drop’ widgets into their interface
or screen. Extending WebJive would mean extending the
framework to expose any missing interfaces. The ability
to create scripts of commands for execution on a TANGO
device, for instance, will require unpicking the Max-IV spe-
cific authentication layer to allow direct commands to be
entered and passed on to the device.

Support from Community
Support from the community is an important considera-

tion and can be considered as a predictor both of how easy
it would be to get support if tackling any issues or limita-
tions in the framework now. It also emerged as a long-term
predictor of the longevity of the solution. The more people
supporting a framework, the more likely it is to grow and
evolve. Essentially the chance that if a maintainer loses in-
terest that someone else from the community will fulfil that
role.

For both Waltz and WebJive, there are a small number of
core contributors. It is however clear looking at the GitHub
stats for the underlying technologies that there is a far larger
and more active community currently supporting the build-
ing blocks of WebJive than those of Waltz.

Patterns and Technologies used
Software is always in a constant state of evolution. For this

reason, it is important to analyze if the technologies involved
and the design pattern adopted in the framework guarantee
the maintainability and make possible the evolution of the
software.

While both Waltz and WebJive make use of a solid set
of software patterns and technology choices, some of the
choices made for Waltz could become increasingly harder to
maintain in the future. The version of JavascriptMVC used
appears to be a fork of the main project taken in 2014. It
also relies on a Java-based REST API component. Long-
term support for the Java CORBA libraries that underpin
the use of Java components in the TANGO infrastructure
is far from clear. In contrast, WebJive uses a combination
of JavaScript libraries (such as React) and Python libraries
(such as Graphene) that are well established in other web
applications. It combines these with TANGO components
(such as PyTango and Taurus) that are widely used across a
number of TANGO sites and projects.

Quality and Availability of Documentation
For a programmer reliable documentation is always a

must. The presence of documentation helps keep track of
all aspects of an application and it improves on the quality
of a software product. Its main focuses are development,
maintenance and knowledge transfer to other developers.

The Waltz framework provides a comprehensive set of
user and developer documentation. WebJive provides a lot
less. However, the usefulness of the Waltz documentation

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL005

WEMPL005
1008

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



is reduced by broken links and missing sections, which in
the team ranking criteria were considered important, both
in terms of learning, and in the discussions as an indicator
of how ‘trustworthy’ the code was. Where WebJive scores
highly is that because it is based on React and GraphQL,
there are a wide range of external training and support mate-
rials available.

CONCLUSIONS
In the paper, the importance of the Graphical User In-

terface in a complex facility like SKA has been reported.
Starting from the requirements derived during the Design
Phases and Bridging Phase, two framework have been iden-
tified. Following the feedback from the SKA stakeholders
during the decision process and defining a list of evaluation
criteria, Webjive has been chosen as framework for SKA
User Interface Generator. Following the User-Centered De-
sign process, a selection a software between the two very
valid candidates has been possible. Also if Waltz has a higher
level of maturity than Webjive, thanks with the interaction
with the SKA stakeholders during the decision making, the
last one has been selected because has proven to adapt better
the operators’ expectations and necessities.

Currently, the team is developing new features and mak-
ing improvements in Webjive in order to reach a good level
of maturity. Next step will be to analyze if, with the modifi-
cation of the code, the framework can be definitively adopted
as a possible candidate as the Graphical User Interface tool
for the whole SKA.

REFERENCES
[1] Square Kilometre Array (SKA),
https://www.skatelescope.org

[2] D. A. Norman and S. Draper, User-Centered System Design:
New Perspectives on Human-Computer Interaction, CRC
Press, 1986.

[3] V. Alberti et al., “Usability recommendations for the SKA 
Control Room obtained by a User-Centred Design approach”, 
in Proc. ICALEPCS 2017, ES, Barcelona.
doi:10.18429/JACoW-ICALEPCS2017-THAPL0

[4] Tango Controls, https://www.tango-controls.org

[5] Scaled Agile Framework (SAFe),
https://www.scaledagileframework.com

[6] Waltz,
https://waltz-docs.readthedocs.io/en/latest

[7] M. Canzari et al., “A GUI propotype for SKA1 TM Services: 
compliance with user-centered design approach”, in Proc. 
SPIE 2019 Software and Cyberinfrastructure for Astronomy 
V, TX, Austin. doi:10.1117/12.2313276

[8] TANGO REST API,
https://tango-rest-api.readthedocs.io/en/
latest

[9] JavascriptMVC,
https://github.com/jmvc-15x/javascriptmvc-1.
5.x

[10] WebIX, http://webix.com
[11] ploty.js, https://plot.ly/javascript

[12] Webjive,
https://webjive.readthedocs.io/en/latest

[13] React, https://reactjs.org

[14] GraphQL, https://graphql.org

[15] Redux, https://redux.js.org

[16] AIOhttp,
https://aiohttp.readthedocs.io/en/stable

[17] Taurus, https://taurus-scada.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL005

User Interfaces, User Perspective, and User Experience(UX)
WEMPL005

1009

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


