
A NEW SIMULATION TIMING SYSTEM FOR SOFTWARE TESTING IN
COLLIDER-ACCELERATOR CONTROL SYSTEMS∗

Y. Gao†, T. Robertazzi, Stony Brook University, Stony Brook, USA
K. A. Brown, M. Harvey, J. Morris, R. H. Olsen, Brookhaven National Laboratory, Upton, USA

Abstract
Accelerators need to be operated in a timely way to suc-

cessfully accelerate the beam from its creation at its source,
to the experiments at its destination. Thus, synchroniza-
tion among accelerator devices is important. The Collider-
Accelerator Department (C-AD) of Brookhaven National
Laboratory (BNL) develops their own control systems for
their accelerator complex1. The synchronization in the C-
AD control systems is accomplished by a distribution of
timing signals, which are sent out along so-called2 time
lines [1] in the form of digital codes. Accelerator devices in
the complex which require their times synchronized to the
acceleration cycles are connected to the time lines. Those
devices are also equipped with time line decoders [2], which
allow them to extract timing signals appropriately from the
time lines. In this work, a new simulation timing system is
introduced, which can generate user-specific timing events
for software testing in the C-AD control systems.

INTRODUCTION
Accelerator systems must be synchronized for the proper

operations of equipment over a wide area. In order for the
beam to have the desired properties (momentum, size, inten-
sity, etc.), devices must act in concert, and evolve together
in a particular way [2]. Hence the synchronization among
accelerators, and devices within each accelerator is crucial.

In the C-AD control systems, the synchronization is ac-
complished by a distribution of timing signals around the
accelerator facility [2]. Devices which need timing signals
synchronized to the acceleration cycles are connected to the
time lines. Timing signals are sent out along a time line in
the form of digital codes, and those codes (representing the
timing signals) can be extracted by devices (equipped with
time line decoders) in the accelerator complex from the time
line as signals to perform certain operations.

To better understand it, consider the following example.
The Booster main magnet power supply is programmed to
start to follow a reference function when it receives a time
line trigger from the time line. A time line trigger is also
typically called a time line event, which corresponds to a spe-
cific hexadecimal number and is given a 3-letter acronym. In
this case, the hexadecimal number is 000A, and its acronym
∗ Work supported by Brookhaven Science Associates, LLC under Contract

No. DE-SC0012704 with the U.S. Department of Energy.
† ygao@bnl.gov
1 The complex includes the Linear Accelerator (Linac), the Electron Beam

Ion Source (EBIS), the Tandem Van de Graff pre-accelerators, the Booster
accelerator, the Alternating Gradient Synchrotron (AGS), and the Rela-
tivistic Heavy Ion Collider (RHIC).

2 These time lines are like timing buses inside a computer.

is BT0, which stands for Booster-Time-zero. This time line
event triggers the start of the Booster main magnet cycle,
hence this name. Moreover, BT0 is distributed to all devices
on the time line, therefore any other device who is interested
in this event will also be programmed to respond to it.

In the C-AD accelerator complex, there is an elaborate
timing system to accomplish the synchronization, which
provides a highly reliable, serial timing link to all equip-
ment locations. Events and clocks derived from this link
are used to initiate hardware operations including changes
in settings, state changes, and data acquisition. Particularly,
the synchronization is collectively conducted by three tim-
ing systems [3], the event link system, the beam-sync event
system, and the Real Time Data Link (RTDL). The event
link system provides a reliable serial timing link to equip-
ment locations throughout the RHIC complex. It is a crucial
component in the C-AD control systems.

This work mainly focuses on the event link system. Specif-
ically, a new simulation timing system is proposed, which
can generate user-defined timing events at specific times on
specific event links. Developers can use this simulation sys-
tem to interact with timing-sensitive applications for testing
purposes, hence improving the reliability of the controls
timing system.

A more detailed motivation is presented.

Motivation
The occurrences of timing events on the C-AD event links

affect the running of controls software in many ways. Some
particular timing events trigger the executions of some soft-
ware methods directly. Other events (such as PPM3 user
codes) establish a context that affects the way software oper-
ate.

In the front end level, Front End Computers (FECs) detect
events by VME boards with direct connections to an event
link. In the console level, ADO managers4 and other console
level processes receive notifications over the network from
FECs. FECs use “relMon” ADOs to deliver notifications of
events as they happen on the event link. For each event link,
a special “evMon” ADO delivers regular reports that sum-
marize all the events that have occurred during a Supercycle
(a 4 seconds time period on the RHIC event link, see details
in the next section).

In order to test software thoroughly, the software should
be run in a variety of timing conditions. For example, we
sometimes need to arrange a time to test a piece of software
when multiple PPM users are active at the same time in the
3 Pulse to Pulse Modulation, which will be introduced later.
4 Console level servers which hold ADOs. ADOs stand for Accelerator

Device Objects, see next section for details.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA046

Timing and Synchronization
MOPHA046

307

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Supercycle or when the Supercycle is particularly long or
particularly short. This can be difficult to do in practice
because changes made to the Supercycle affect the entire
complex. Since console level servers and applications learn
about event link activities by notifications over the network,
they do not necessarily require changes to the events on the
actual event link. A “Virtual Event Link Server (velServer)”
could deliver “relMon” notifications and “evMon” reports
that simulate the timing conditions desired for software test-
ing.

A virtual event link server would be a special ADO man-
ager. The expected functionalities are:

• Each virtual event link server would support one “ev-
Mon” ADO and multiple “relMon” ADOs for some
selected sets of events;

• It would accept a definition of all the events in the
user-specific event links as an ordered list of events
code-time pairs;

• It would repeatedly “play back” all the events in the
right order and approximately at the right time (looped
fashion);

• When any of the “relMon” events occurs, the virtual
event link server would send an asynchronous report
to any client with asynchronous requests;

• At the end of the event list, the virtual event link server
would send an “evMon” report summarizing all the
events that had occurred in the event list.

PRELIMINARIES
In this section, we will introduce some basic conceptions

in the C-AD control systems that are related to the proposed
simulation timing system.

Accelerator Device Object
One of the most fundamental concepts in the C-AD con-

trol systems is the Accelerator Device Object (ADO) [4].
The ADO model is a flexible way to view accelerator equip-
ment. It was introduced during the development of the RHIC
control system in the late 1990s. One of the primary goals
of the ADO concept is to establish unified standards for con-
trols software development, which automates the integration
of device level controls into the overall control systems and
simplifies the coding process.

ADOs provide developers ways to control the accelerator
complex. They (instances of C++ or Java classes) abstract
features from the underlying controls devices into a collec-
tion of collider control points (also known as parameters),
and provide those parameters to the users of the control sys-
tems. Each parameter can possess one or more properties
to better describe the characteristics of the devices. ADO
designers determine the number and names of parameters
based on the needs of the system.

Two of the most important ADO class methods for de-
vice control are the set() and get() methods. They act as
the interface to access controls hardware. The accelerator
complex is controlled by users or applications which set()

and get() parameter values in instances of the ADO classes.
ADOs also support event codes, which will execute some
specific codes whenever the defined events happen. This is
the mechanism of generating simulated timing events in the
proposed simulation structure.

Since the crafting of ADOs is so crucial, special develop-
ment tools are used. The source file of an ADO is typically
stored in a file with a “.rad” extension, which stands for
RHIC ADO Definition file. A preprocessor called “ado-
gen” is used to transform “.rad” file source codes into C++
codes [5]. It takes care of the necessary details and allows
ADO designers to focus on the more important parts, i. e.
the controls interfaces, which are the set(), get() methods
and event codes.

Controls Name Server
The Controls Name Server (CNS) provides [4] a cen-

tralized repository where unique name/value pairs can be
efficiently managed and queried5. In C-AD control systems,
given an object’s instance name6, the CNS will provide
enough information so that the associated data can be ac-
cessed.

The CNS is session oriented which means several copies
of it can be run at the same time as long as each of them
has its own host. This feature allows developers to have a
“private” CNS. This makes it possible to signal a process to
look for an ADO instance in a different place from where it
normally resides. The simulation framework introduced in
this work leverages this property to redirect applications to
interact with simulated ADOs instead of real ADOs.

Supercycle
One of the major concepts in C-AD timing system is called

the “Supercycle”. It is a very important timing mechanism
to the accelerator complex, which enables the machines to
act in concert to accelerate the beam from its source to its
destination. A Supercycle typically consists of a set of events
from which all other events are delayed in one way or another.
In this sense, the Supercycle timing is considered the highest
level of timing [2].

The events that generally compose the Supercycle are
one or more Tandem or Linac cycles, one or more Booster
cycles, and one AGS cycle. The granularity of these events
is 1/60 second (this time length is also called one “Jiffy”).
The length of the Supercycle is usually about 3 to 5 seconds
long.

The software application that is used to control the Super-
cycle is called “SuperMan”, which will be introduced in the
next section.

Pulse to Pulse Modulation
Another important concept in the timing system is called

Pulse to Pulse Modulation (PPM). PPM refers to the fact that
5 Function likes a Domain Name Server (DNS) [6].
6 That object can be an ADO parameter, a Complex Logical Device (CLD),

a manager’s parameter name, or an alias (a name used by developers
which is more human-readable), etc.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA046

MOPHA046
308

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization



machine cycles within the same Supercycle, for the same
machine7, can be used differently [2].

The function of an individual PPM user is to control dif-
ferent machine cycles that occur on the Supercycle. A PPM
user can be configured to allow a certain number of cycles
to occur on one machine before allowing another PPM user
to begin on the same machine, or while overlapping with
another PPM user on a different machine.

Each machine usually has multiple users, and each user
can be identified by a specific color in software used to
control PPM devices. Moreover, user settings can always be
found in the controls system, which allows quick changes
to be made to the machines’ setup by switching or adding
PPM users as necessary.

To better illustrate the concept, consider the following
example. Suppose PPM user 1 has a Booster cycle within
a Supercycle that is used as part of the acceleration cycle
for the physics program. During the time the AGS is ac-
celerating the beam for the physics program, the Booster
may be idle. However, that time within the Supercycle could
be used to study Booster phenomenon. Therefore, another
PPM user, say user 2, could be configured accordingly with
a group of setpoints and timings for this purpose. This user
can be set to occur during the time that the Booster would
have been idle, by programming it with the appropriate time
in the Supercycle.

System Tools
SuperMan It is a program to set up and make active a

Supercycle. It reads and dictates the live magnet function
through the controls system and displays the information
to the users. The program allows the users to predict what
changes need to be made in order to alter the Supercycle.
The changes will be verified by the program and proceeded
if they are acceptable. The user can then load the changes
and give the machine a new Supercycle.

EventLinkDisplay It is a program to display event data
for all PPM users in event links. Users can select an event
link they want to monitor, and then acquire the event infor-
mation (including event names, event times, etc.) on that link
in real-time for once or continuously. The result is displayed
in a list format with those event information. The event in-
formation are fetched from the underlying “evMon” ADOs’
reports, which makes it convenient to verify the simulation
results by showing the simulated timing events’ information
on the “EventLinkDisplay” through a private CNS.

SIMULATION ARCHITECTURE
OVERVIEW

The simulation architecture is shown in Fig. 1. The virtual
event link server (the “velServer” block) holds the “relMon”
and “evMon” ADOs, interacting with the applications that
need event triggers.
7 Here machine refers to the accelerator complex, e. g. AGS, Booster, Linac,

etc.

Figure 1: The architecture of the virtual event link server.

The “relMon” and “evMon” ADOs are simulated ADOs.
They have the same alias as the real ADOs, so that the ex-
isting applications can directly interact with them without
changing their codes. On the other hand, the simulated
ADOs only reside in the local hosts so as not to interrupt
the overall system. The “private” copies of CNS on those
local hosts will have their real ADOs’ entries replaced with
the corresponding simulated ADOs’. Then the applications
running on those local hosts will communicate with the sim-
ulated ADOs properly. The exact ADOs to simulate are
decided based on the users’ demands.

To better understand the simulation structure, we first
introduce each of its function block in a top-down manner,
then describe the simulation procedure.

Build the Configuration Files
Currently, there are four event links that can be simulated,

i. e. the AGS event link, the Booster event link, the EBIS
event link and the Linac event link. First, users need to run
“extractInfo” to extract information about those event links
from the database. Those information will be used to run the
simulation later. The information are stored in the “EvLink”
and “CodeMap” files.

One “EvLink” file is created for each event link, so a total
of 4 are created. Each file stores information about all the
“relMon” ADOs on that event link. For each “relMon” ADO,
the following information are recorded:

• The 3-letter8 name of the event that the ADO is respon-
sible for (such as BT0);

• The corresponding event number (such as 10);
• The ADO’s generic name;
• The ADO’s alias.
Take the “EvLink” file for Booster for example. One en-

try it contains is “BT0 10 belMon.simBT0.10 belMon.bt0”,
where “BT0” is the 3-letter acronym, 10 is the event num-

8 Some event names have more than 3 letters, but most of the names are 3
letters.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA046

Timing and Synchronization
MOPHA046

309

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



ber, “belMon.simBT0.10” is9 the ADO’s generic name and
“belMon.bt0” is the ADO’s alias.

Each “EvLink” file also contains event code maps for
that event link, which includes the correspondences between
event names and event codes. For the “BT0” example, the
code map entry is “BT0 10”.

The “CodeMap” file stores the code maps for all the Su-
percycle events. Note that, a Supercycle usually contains
events from other event links. Therefore, an event from an
event link could have a different event code in the Supercy-
cle. In such cases, the original event codes are applied in the
simulation. “BT0” event has the same event code both in
the Booster and the Supercycle, thus its entry in “CodeMap”
is the same “BT0 10”.

Software Generator
Since one server file (“velServer”) only supports a specific

set of ADOs (which depends on the users’ demands), to
accommodate various users’ demands, a new server file
needs to be created for each new user’s request. To facilitate
the building of such server files, the “serverGen” block acts
as a software generator [7] which automatically produces
the server files for users.

The event list for the simulation is provided by users in
the file “EvList”. This file contains what events users want
to generate and at what times. The information is organized
as pairs. For example, the first line of an “EvList” file could
be “SCS 1”, which means Supercycle starts at 1 “Jiffy”. The
second line could be “BT0 4”, which means Booster-Time-
zero event starts after 3 “Jiffies”. The file can contain many
other events based on the users’ demands.

The “EvList” file can come from an existing SuperMan’s
history file (for simulating Supercycle events) or can be
created based on users’ demands. Specifically, users can
write it in a plain text file or it can come from the logged
data for the selected event link. If no file is specified, a
SuperMan’s history file10 is used as the default event list file.

The “serverGen” loads the “EvList” file and uses the infor-
mation from the “EvLink” and “CodeMap” files to generate
the server file, which will be built later and serves as the
virtual event link server to interact with applications (by
sending event triggers at specific times defined by the users).
Note that, multiple “EvLink” files (a total of 4) can be loaded
in the same simulation, in which case multiple event links
are being simulated.

Control the Events Generation Process
Once the server file is generated, users can build it and

start the virtual event link server. The server sends out event
triggers to all the asynchronous clients at appropriate times.

The “Pet” is a file that is used to create a customized PET
page for the virtual event link server. The PET page lists all
9 The “simBT0” in the middle of the name implies that this is a simulated

ADO, in order to differentiate it from the normal ADO.
10A SuperMan’s history file is chosen as the default value for it already

possesses a proper format that can be directly loaded and used by the
simulator.

the events that are in the server. For each event, the PET page
lists its event name, event code, a switch, and times at which
this event will be triggered. The switch gives users an easy
way to turn on and off a particular event on the simulated
event link. For an event that is currently turned on, users
can also edit its event times to specify when it appears on
the simulated event link. The PET page is expected to act as
a major user interface developers could use to conveniently
control the events generation process.

Simulation Procedure
First, users run the script “extractInfo” to gather event

link information and build the Supercycle code map. Note
that this script only needs to be run one time before the
simulation starts, since the information can be reused for all
the simulations.

Next, users need to specify what events they want to sim-
ulate and at what times. They do it by creating a “EvList”
file. For simulating Supercycle events, existing SuperMan’s
history files can be used directly as the event list file. Oth-
erwise, users can either write one in a text file or use the
logged data. If no file is specified, a default SuperMan’s
history file is used. Either way, the file is in a list-of-pairs
format. The first element of the pair is the event name or the
event code, the second element is the event time at which
the event is going to be triggered11.

After having all the necessary files, the “serverGen” starts
to generate the server file. The outputs are “velServer”,
“cnsConfig”, and “Pet”.

velServer It is the source code of the virtual event link
server, which holds the simulated “relMon” and “evMon”
ADOs based on the users’ demands. Once the simulation
starts, the virtual event link server triggers events at spe-
cific times according to the information in the “EvList” file.
The events are triggered by calling the ADOs’ “EVENT-
CODE” [5]. If logged data are used, the server invokes an-
other script “ReadEventLinkLog” to fetch the logged event
information12. The event list is played in a looped fashion.

cnsConfig The simulation is performed on a private
CNS so as not to interrupt the normal operations of the
facility. The private CNS directs clients to communicate
with the simulated ADOs, which are held by the virtual
event link server to generate event triggers. The “cnsConfig”
file is used to configure the private CNS so that it gets the
necessary information to set up the entries for the simulated
ADOs.

Pet As introduced above, the “Pet” file is used to create
a PET page, which could serve as the main user interface
for developers to interact with the virtual event link server.
Through the PET page, users can decide whether or not to
11The unit for the time can be in “Jiffy” or “microsecond”, and it represents

the time difference that is relative to time 0.
12“ReadEventLinkLog” is a C++ application in C-AD to fetch logged event

data.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA046

MOPHA046
310

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization



trigger a particular event, and also specify at what times
this event can be triggered. Any change made in the current
event loop will start taking effect from the next loop.

One thing that is worth mentioning, the PET page renders
the simulation structure the flexibility of controlling events
on the link without the need of recreating the server’s source
file. This could be very useful in cases where users just want
to modify the existing events that are in the simulation. This
also indicates that if all the supported events on a particular
event link are listed in the “EvList” file, then users just need
to run the “serverGen” once to generate a server file that
has the ability to simulate any event on that event link. In
this way, as long as doing simulations on that event link, the
server file can be reused. Users only need to operate through
the PET page to meet the simulation needs.

Simulation results can be verified through viewing the
event information in the “EventLinkDisplay” (by selecting
the event links that are in the simulation), using the private
CNS that is configured with the “cnsConfig”.

SUMMARIES
In this work, we propose a new simulation timing system

which aims to generate user-specified timing events for soft-
ware testing in the C-AD control systems. It can be used
in various timing-related testing scenarios. For example, to
test programs which have PPM features, we can apply the
simulator to create timing conditions for different PPM users
to verify each one’s functionality. It could also be possible to
make the virtual event link server to be synchronous with the
real Supercycle, so that developers can do experiments using
the simulated Supercycle without interrupting the normal
operations of the facility.

REFERENCES
[1] Bus (computing), https://en.wikipedia.org/wiki/
Bus_(computing)

[2] K. Zeno, “A Rookie’s Guide to Booster Operations”, BNL,
Upton, USA, Rep. BNL-105273-2014-TECH, Sep. 1998.

[3] B. R. Oerter, “Accelerator Timing at the Relativistic Heavy
Ion Collider”, in Proc. ICALEPCS’99, Trieste, Italy, Oct. 1999,
paper MC1P06.

[4] D. S. Barton et al., “RHIC control system”, Nucl. Instrum.
Methods Phys. Res., Sect. A, vol. 499, no. 2–3, pp. 356–371,
Mar. 2003.

[5] R. H. Olsen, L. Hoff, and T. Clifford, “Code Generation of
RHIC Accelerator Device Objects”, in Proc. ICALEPCS’95,
Chicago, USA, Oct.-Nov. 1995, paper W-PO-58.

[6] Domain Name System, https://en.wikipedia.org/
wiki/Domain_Name_System

[7] Automatic programming, https://en.wikipedia.org/
wiki/Automatic_programming

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA046

Timing and Synchronization
MOPHA046

311

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


