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Abstract 
For most of its over 30 years of operation the ISIS Neu-

tron and Muon Source [1] has been using bespoke control 
software on its beamlines. In the last few years, we have 
been converting the beamline control software to IBEX [2], 
which is based on the Open Source EPICS toolkit [3]. More 
than half the instruments at ISIS are now converted. IBEX 
must be robust and flexible enough to allow instrument sci-
entists to perform the many experiments that they can con-
ceive of. Using EPICS as a base, we have built Python ser-
vices and scripting support and are developing an 
Eclipse/RCP Graphical User Interface (GUI) based on 
Control System Studio [4]. We use an Agile based devel-
opment methodology with heavy use of automated testing 
and device emulators. As we move to the final implemen-
tation stage, we are handling new instrument challenges 
(such as reflectometry) and providing new functionality 
(live neutron data view, script generator and server). This 
presentation will cover an overview of the IBEX architec-
ture, our development practices, what is currently in pro-
gress, and our future plans.  

INTRODUCTION 
The ISIS Neutron and Muon Source is located at the Sci-

ence and Technology Facility Council (STFC) Rutherford 
Appleton Laboratory in Oxfordshire, UK. The facility pro-
duces beams of both neutrons and muons to conduct exper-
iments at this world leading centre for research in the phys-
ical and life sciences. To successfully deliver these experi-
ments the beamlines have to be controllable, and this is the 
function that IBEX provides. 

There are more than 30 beamlines at ISIS covering 7 
main science techniques. The facility was opened in 1985 
and 10 years ago the second target station at ISIS was com-
pleted, doubling the capacity for beamlines. With that 
length of history, and the established reputation of ISIS, 
changes to control systems have to be done carefully.  

IBEX ARCHITECTURE 
Hardware 

A detailed description of our hardware architecture has 
been presented in the past [5]. The core instrument control 
computers are a Virtual Machine (VM) which hosts the Ex-
perimental Physics and Industrial Control System (EPICS) 
Input Output Controllers (IOCs) for the beamline devices. 
These VMs are run one per beamline on a dedicated server, 
and are accessible on the general ISIS network. They will 

also have a dedicated private network where this is re-
quired for the devices being controlled. An EPICS gateway 
is used to provide access control to IOCS. 
 

 
Figure 1: Hardware architecture. 

 
More complicated devices typically have their own con-

trol computer, and will run a reduced version of IBEX to 
host the IOC more locally. An example of this are some of 
the imaging cameras used by the IMAT instrument. See 
Fig. 1 for an overview of the hardware architecture. 

As the instrument control computer is a VM, there is 
usually an additional local computer provided to access the 
control system over the network by the user. IBEX’s client-
server architecture also enables users to view read-only in-
formation on remote computers without impacting local in-
strument control, which was not possible under the previ-
ous control system. 

Software Architecture 
A basic overview of the software architecture is shown 

in Fig. 2, and a more detailed description can be found in 
[2]. 

The IBEX Server controls individual devices via EPICS 
IOCs, which are wrapped within procServ [6] process har-
ness instances. Each IOC has an associated config.xml file 
which provides information on configuration options (EP-
ICS Macro names) for using within a beamline. The actual 
values for these macros (which might be used to set a com-
munication port address) are maintained by the 
BlockServer process, which collates sets of IOC macros 
into “configurations” for selection by the user.  

We run two Control System Studio [4] archive engines 
to store various Process Variables (PVs) of interest, one 
deals with scientifically useful data (which is placed into 
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the experiment data files) and the other contains diagnostic 
data.  

The neutron and muon data is generally captured via fa-
cility specific detectors and data acquisition electronics. 
This data is collected from the hardware and combined 
with PV data by the Instrument Control Program (ICP) to 
generate a NeXus [7] file which is then made available to 
the experimentalists for analysis of the data. 

 
Figure 2: Software architecture. 

The Blockserver is the keystone in IBEX, as it manages 
the configuration of the instrument and provides the flexi-
bility the instrument scientists require. It is responsible for 
controlling which IOCs are running, and which PVs should 
be logged to the data files, based on an instrument config-
uration which is defined by the scientists. The Blockserver 
is a Python process based on PCASpy [8], which enables it 
to serve and receive values from clients via EPICS Channel 
Access. 

As already stated the instrument configuration contains 
the list of IOCs to be run on that particular beamline or in-
strument, as well as the associated parameters, such as con-
nection addresses. That list varies from beamline to beam-
line, and between experiments on a beamline, which is why 
the system needs to be as flexible as it is. 

An instrument configuration can be built up from a num-
ber of smaller parts called components, this helps reduce 
duplication as fixed items on a beamline can be placed in a 
single component and included in all configurations easily. 

Whilst all communication to and from the IBEX Server 
is via Channel Access, this isn’t the easiest way to consider 
the system for an instrument scientist, as such a GUI 
known as the IBEX Client (see Fig. 3) has also been devel-
oped. 

 

 
Figure 3: IBEX client. 

 
The IBEX client is an Eclipse RCP based program, with 

many tabs able to show different information. The Script-
ing option provides a Python scripting window running the 
ISIS genie_python package [9]. This package provides a 
familiar command set to instrument scientists following 
from the Open GENIE [10] scripting language that was 
used with the previous control system. 

The Synoptic window, as showing in Fig. 3, is an addi-
tion to the views available to instrument scientists. The 
icons shown are the devices along the beamline from the 
target on the left to the detectors on the right. Each icon can 
be clicked on to gain access to a “Device Screen” which is 
a CS Studio Operator Interface (OPI). These screens for 
equipment can also be independently added to the Device 
Screens window, allowing different ways of interacting 
with the equipment. 

Due to the client/server nature of the IBEX system, the 
IBEX Client can actually be directed to get information 
from any IBEX Server on the network. This allows techni-
cians to check on devices on multiple beamlines easily 
from their office computer systems. 

THE TEAM 
As is usually the case for software teams supporting sci-

ence research the team working on developing IBEX are 
also the team providing support for it, dealing with imme-
diate issues as well as finding longer term fixes to prob-
lems. The team is responsible for the computers used to 
control the beamlines, as well as the software needed at 
each level. Whilst the main infrastructure of the network is 
not our responsibility, we have to be aware of it and use it, 
and the ways to connect devices to the instrument control 
computers.  

This makes the IBEX team a DevOps [11] team needing 
skills and knowledge ranging from the building blocks of 
the actual computer to being aware of accessibility for the 
Graphical User Interface. 

We have a mix of skills and experience in the team 
which provides a good dynamic. Those with more experi-
ence are able to guide the project, and are able to resolve 
some issues instinctively. Whilst those with less experi-
ence bring new ideas and question current practices, mak-
ing sure the software is as good as it can be. 
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DEVELOPMENT PRACTICES 
In order to avoid lost beam time, and to provide the in-

strument scientists with confidence in the system we use a 
number of development practices to support the production 
of IBEX. 

The development project for IBEX is run based on Agile 
[12], with a modified SCRUM [13] implementation. The 
main modification we have undertaken is in relation to the 
role of the Product Owner. Instead of having a single Prod-
uct Owner we use the more experienced members of the 
development team as proxy product owners. This is be-
cause each beamline has its own individual requirements 
and priorities. The team translate these requirements and 
priorities from the beamline scientists into a smaller prior-
itised list that can be considered each sprint.  

A Scientific Advisory Group (SAG) has been set up with 
various representatives on it to provide strategic guidance 
as to the importance of features and development work. 
Members of the development team have also taken on roles 
where they will champion an area of work, such as the 
GUI, or the migration of an instrument, ensuring prioriti-
sation of those tasks, and management of more individual 
users. Similarly, we do not have a named scrum master, but 
different people take on the role as required, or based on 
their skills and knowledge. 

Due to these modifications our SCRUM ceremonies, the 
standard meetings of SCRUM, are also slightly altered. We 
have a daily stand up that considers the operations element 
of our role as well as the development areas, looking early 
for potential issues with our systems. Our sprints run over 
4 weeks, but our releases don’t coincide with a sprint end. 
This isn’t in keeping with true SCRUM, but is practical for 
the rhythm of the facility which runs for scheduled experi-
ment cycles. These cycles can have variable times between 
them, and run for longer than a sprint, and so we aim to 
release before most cycles. We do not have any ‘customers’ 
present at our sprint reviews, but instead the members of 
the development team take on that role based on 
knowledge and experience. The changes discussed are later 
communicated to the scientists in smaller meetings, a few 
beamlines at a time, by a subset of the development team. 

In order to ensure that any code changes are of an appro-
priate standard, we undertake Continuous Integration (CI) 
via Jenkins [14], which runs both system and unit tests and 
creates a deployment package. The builds have been 
hooked into our git [15] version control system, meaning 
tests are run before code changes are merged, following 
best practice for software development.  

Part of the system testing is a suite of IOC tests. These 
ensure that the IOC is can still communicate directly with 
the hardware device. It is not possible or desirable to repli-
cate all the devices on a beamline so instead we use a de-
vice emulator written in LeWIS [16] python framework to 
emulate devices. The use of emulators allows us to set em-
ulated conditions in the hardware from the mundane, e.g. a 
temperature value, to the extreme, e.g. an overheating bear-
ing in a chopper. This approach allows for easy regression 

testing even when dependencies are up-graded, and im-
proves confidence in the code base being deployed initially 
and on upgrade. Furthermore this technique allows us to 
undertake Test Driven Development (TDD) of the IOC be-
cause the device does not need to be setup every time a set 
of tests are run. The final stage of development is to check 
the software against the item being controlled. 

We also undertake system testing using Squish [17]. This 
allows us to look at more integrated testing, and checks that 
our GUI is still functioning as expected. 

The unit and system testing is undertaken frequently 
thanks to the CI, but there are some system tests we haven’t 
automated yet, and some which have to be run manually. 
As such, given the size of our code base prior to a release 
we do undertake a round of system testing. This testing is 
time consuming, and the slower release schedule compared 
to our four week sprints makes this task less onerous. 

RECENT ADDITIONS 
Live View 

 
Figure 4: Example of live view image. 

There are times when an instrument scientist wishes to 
see what the neutron data is providing in close to real time, 
this is what live view provides. The image in Fig. 4 shows 
data from one of the instruments in the Small Angle Neu-
tron Scattering (SANS) technique suite of instruments. 
This data is plotted whilst the system is still collecting data, 
rather than needing to wait for the experiment to finish and 
then plotting the data, or having to write a file so that the 
analysis software can then open that interim or experiment 
file. 

Datastreaming 
The datastreaming project was started as part of ISIS’s 

in-kind contribution to the ESS. The current neutron data 
collection model at ISIS is to store data in bespoke hard-
ware, read it out into memory on the instrument server and 
then collate it with sample environment data and save it to 
file. This model is not feasible at the ESS due to the very 
high data rates expected.  
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Instead the ESS will use a system where individual neu-
tron events are published straight from detectors into a dis-
tributed streaming platform based on Kafka [18]. Sample 
environment data from EPICS will also be published into 
this Kafka instance. Finally, a separate process will read all 
the scientific data out of Kafka and collate it into a stored 
file. As well as being able to deal with greater data rates the 
system has a number of other advantages including: 

• Server redundancy in the Kafka cluster 
• Mechanisms to deal with data loss in transit 
• More modular design 
• Ability to “playback” past neutron events 
We are currently in the process of planning how we can 

roll this system out across ISIS. For more information on 
the system see [19].  

IN PROGRESS 
Motion Control 

Motion control at ISIS is currently mostly provided by a 
Galil [20] based system. Although we have found these 
controllers to be reliable they are becoming unable to meet 
the accelerating requirements of scientists. This is most no-
ticeable in axis synchronisation, where scientists wish to be 
able to move a large number of axes (>10) in a synchro-
nised way, whilst maintaining accurate timestamps to cor-
relate motor positions with neutron data. Attempted solu-
tions to this using the Galil required software running on 
the control VM and the delay of communication with the 
controller meant that meeting the required accuracy was 
difficult.  

To better meet these requirements we are moving to an 
Ethercat based system, specifically that provided by Beck-
hoff twincat [21]. This system contains a PLC that can be 
used to coordinate motion for a large number of axes in real 
time as well as gather high precision timestamps. This ad-
ditional functionality comes with additional complexity, 
specifically there is a challenge in creating a framework for 
the PLC code that is flexible enough to be used in a wide 
variety of applications without requiring bespoke code on 
every controller. To tackle this complexity we have started 
working much more closely with mechatronics engineers 
within ISIS as well as starting a working group with col-
leagues at the European Spallation Source (ESS) [22] and 
the Julich Centre for Neutron Science (JCNS) [23]. 

Reflectometry 
One of the more complicated scientific techniques from 

the beamline controls perspective is reflectometry. This 
technique measures neutrons reflected off a sample with an 
extremely flat surface, often a thin film on a substrate. 
Based on the incident angle of the neutrons, then the com-
ponents of beamline need to be aligned to ensure that the 
neutrons are detected accurately. This co-ordinated and 
complex motion control has required the development of a 
reflectometry server which calculates the beam path and 
then derives the required motion for the beamline compo-
nents. 

 

Server Architecture 
It has already been stated that under the existing archi-

tecture IBEX is run in a VM on a dedicated server. A VM 
can be described as a “computer file … that behaves like 
an actual computer” [24]. The use of this file allows for 
easier backup and restoration of the system as the host sys-
tem ceases to be as important to the overall system. This 
use of a VM was in place at ISIS Pulsed Neutron and Muon 
Source before we started introducing IBEX. The VM is 
part of a wider variety of options for virtualisation [25], and 
with the increase of cloud computing and similar the avail-
ability and usability options of virtualisation techniques 
has increased. 

One technique that is being developed at ISIS is to use a 
collection of Virtual Hard Disks (VHDs) to help with de-
ployment. This allows different part of the system, stored 
on different disks, to be updated independently, see Fig. 5. 

The system VHD will contain the OS and installed pro-
grams and applications. The VHD would be updated as re-
quired based on the requirements for cybersecurity up-
dates. 

The App VHD would house our applications, this is 
where IBEX is installed, and will ideally be generic to all 
instruments. Practically IBEX may require hotfixes on in-
dividual instruments. These hotfixes are updates that occur 
when new devices are being developed, or something is 
changed for an instrument between releases of IBEX. 
These hotfixes are recoded and then dealt with appropri-
ately for the next release, which might be a merge into mas-
ter, or a reworking of something to provide more flexibility. 

 

 
Figure 5: Collection of VHDs. 

The Configuration Settings VHD is where the settings 
for that beamline are kept, such as addresses for sample 
environment equipment, and will be persisted through up-
grades and updates of the System and App VHDs. During 
updates of IBEX, some items in the settings may also need 
to be updated, but these changes will be small and will not 
involve replacing the system. Backing up this VHD should 
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allow a new build to run as if it were an existing system, or 
a system that failed to be easily replaced. 

The Var VHD contains the variable data, for example the 
information generated during experiments. This should be 
the most volatile of the VHDs, with the contents changing 
regularly, and important information being archived for ac-
cess and analysis at a later date. 

FUTURE PLANS 
Scripting Enhancements 

When the ISIS Synchrotron is running, the beam is avail-
able for experiments 24 hours every day of the week. The 
use of scripting allows the useful time to be maximised by 
running scripts overnight. genie_python allows for long 
running scripts to be created and run from a terminal, but it 
is unable to recover should the process be interrupted or the 
script have an error in it. To avoid this the plan is to queue 
a number of smaller user scripts onto a script server. If one 
of these scripts is interrupted, the next one in the queue can 
be enacted when the script server starts up. Rather than cre-
ate our own script queueing system we have integrated 
NICOS [26] in order to use their script server functionality. 
We have had to create our own user interfaces for it, but the 
core server functionality is on beamlines and provides a 
good basis for our script server.  

The instrument scientists have asked for some exten-
sions, such as time estimation for how long the script 
should take to run, and being able to skip the current script. 
They would also like to see our interfaces include such 
things as syntax highlighting and code completion. There 
are also occasions where there is a need to run a secondary 
script in addition to the primary one. For example, the pri-
mary script may be ramping temperatures for experiment 
data, whilst a secondary script ensures that a motor keeps 
a stirrer going continuously – we do not want to interrupt 
the stirrer for the sake of changing a temperature. 

Alongside the Script Server is the Script Generator. 
When an experiment requires changing a few standard set-
tings then being able to automate the generation of the 
script simplifies the process and reduces errors from typ-
ing. Repeated items can be managed without the need for 
the instrument scientist to enter each step value for a loop, 
or for a visiting scientist to be familiar with commands in 
genie_python that undertake data collection. Different 
techniques have different requirements for the interface 
and output of the script generator. The generated script also 
needs to interact easily and transparently with the script 
server, so that the generator can be given appropriate pa-
rameters, create the script and send it to the server to run 
with the user not looking at any screen other than the gen-
erator.  

User Interfaces 
Whilst it is still very early for us, we are starting to con-

sider the changes that will be required as CS Studio Phoe-
bus replaces CS Studio Eclipse. 

There is also a requirement for some beamlines for lo-
calised control of equipment, especially motion for beam-
lines, and we are looking into building clients that will run 
easily and reliably on tablet computers. The biggest con-
sideration for this usability, allowing for the fact that fin-
gers are less precise than mouse pointers and keyboards. 

EPICS 7 
The introduction of the structure type for pvData is a 

highly anticipated addition to our system, and pvAccess 
will improve some of the interactions between our server 
and clients. These will both become available as we up-
grade our EPICS base software to EPICS 7. 

Instrument Migration 
We are still migrating instruments to the new system, as 

well as developing the functionalities previously men-
tioned. This means we are still adding support for sample 
environment equipment under IBEX. 

CONCLUSIONS 
IBEX is well on the way to replacing our old control sys-

tem, and we hope to complete the process in the next 1-2 
years. The change in control system was originally driven 
by new and more complex experiment requirements, but as 
part of the process we have updated our development prac-
tices too. We are now employing test driven development 
using device emulators, as well as code reviews and unit 
testing. Migrating from the previous control system also 
highlighted issues with its documentation, which we are 
addressing as part of the IBEX migration.  

In any project it is also important to keep customers on 
board, especially when requirements have to be prioritised. 
The Scientific Advisory Group and regularly demonstrat-
ing new features to individual science groups has helped 
here, as well as developing and running regular training 
courses.  

Additional benefits from the distributed nature of the 
new control system are also now also being realised. We 
are able to put in place cross instrument views and moni-
toring of key equipment parameters for technical group e.g. 
detector HV or cryogenic values. In some cases we also 
place these values into Nagios to generate alerts. We have 
been able to take advantage of existing EPICS support for 
imaging cameras, as well as general community written 
drivers. The reflectometry server will also be more flexible 
and powerful than the previous implementations.    

We have also been looking to improve the way we man-
age the instrument as a whole, taking advantage of tools to 
build entire system images and so remove the need to apply 
security patches or updates to every instrument individu-
ally. This will improve reliability and maintainability.    

Though scripting is a very powerful tool, writing scripts 
can be error prone. The script generator in conjunction with 
the script server will help this. However, as we found from 
consulting scientists, there are several different user work-
flows that we will need to provide.  
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We are yet to take advantage of the new pvAccess pro-
tocol available in EPICS 7, but we will be updating our 
EPICS base software to make such features available very 
shortly. We will also be deploying additional Kafka based 
datastreaming instances to allow more live data visualisa-
tion and analysis. 
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