
FROM MXCuBE3 TO BSXCuBE3
A WEB APPLICATION FOR BioSAXS EXPERIMENT CONTROL

M. Oskarsson, A. Beteva, D. D. S. De Sanctis, S. Fisher, G. Leonard, P. Pernot, M. D. Tully
ESRF, Grenoble, France

J. B. Florial, A. A. McCarthy, EMBL Grenoble Outstation, France

Abstract
A new version of the beamline control application

BSXCuBE (BioSAXS Customized Beamline
Environment) designed to control BioSAXS experiments
at the new ESRF Extremely Brilliant Source (EBS) is
under development. The new application is implemented
as a Web application and it is based on MXCuBE3
(Macromolecular Crystallography Customized Beamline
Environment version 3) from which inherits the same
technology stack and application structure. This approach
allows for faster development and easier maintenance. The
advances in architecture and the design of new features in
BSXCuBE3 are intended to enhance the automation on
BioSAXS beamlines and facilitate the integration of new
sample setups, such as microfluidics. As for MXCuBE3,
the access to the application from any web browser
natively allows the execution of remote experiments.
Moreover, the ergonomics of the interface further
simplifies beamline operation even for non-experienced
users. This work presents the current status of BSXCuBE3
and demonstrates how the development of MXCuBE3 has
contributed to the construction of a BioSAXS application.

BACKGROUND
MXCuBE3 (Macromolecular Crystallography Customi-

zed Beamline Environment version 3) is the latest
generation of a beamline control application allowing
beamline users to carry out experiments in
Macromolecular Crystallography (MX). Originally
designed and developed at the ESRF [1] the MXCuBE
project has evolved to become a collaborative development
which now involves eleven institutes [2]

MXCuBE3 is currently in production at the ESRF MX-
beamlines ID29 [3] and ID23-2 [4], BioMAX at MAX-IV
[5] and XRD2 at Elettra [6]. The application has also been
installed for testing on three other ESRF MX beamlines
ID30A-1, ID30A-3 and ID30B, with the aim of full
deployment after the ESRF-EBS upgrade [7]. MXCuBE3
is built on well-established libraries for web development,
including React [8], Redux [9], SocketIO [10] and React-
Bootstrap, in order to create an intuitive, user-friendly
application [11].

First released in 2005 MXCuBE [12] is now the most
frequently used software for MX experiment control and
data acquisition in Europe. The user experience of the
application has always been important and has gained more
focus in recent years, making the application easier to use
such that the user can focus on the experiment at hand
rather than the complexities of the beamline hardware.

The success of MXCuBE3 has inspired and influenced
the development of a new general framework for beamline
control applications, capable of serving both web and Qt
front ends. This framework consists of reusable UI
components, many already existing in MXCuBE3, and a
general purpose backend. The framework further facilitates
good development practices by providing patterns and
abstractions for both back-end and front-end development.
This design effectively allows different applications to
share the same application logic regardless of the frontend
technology used.

One of the first applications to be implemented in this
new framework is an experiment control application for
BioSAXS experiments, BSXCuBE3, scheduled for
deployment in August 2020. BioSAXS is often used as a
complementary technique to MX and many potential
BSXCuBE3 users are already familiar with the MXCuBE3
user interface (UI). Building the BSXCuBE3 UI with the
same technology and design as MXCuBE3 thus not only
shortens development time and eases maintenance, it also
makes the two interfaces mutually consistent from a user
point of view.

GENERAL APPLICATION FRAMEWORK
Many beamline control applications at ESRF have been

successfully developed and deployed using the ESRF
FWK2, a Qt3 based general purpose beamline application
framework [13]. However, the EBS upgrade program, the
introduction of the BLISS beamline control system [14]
and the obsolescence of Qt3 required the introduction of
a new application framework. MXCuBE3 was developed
as a web application to facilitate remote access
experiments at MX beamlines, while most other ESRF
beamline control applications are designed with Qt. The
structure of the new application framework makes it
possible to use the same back-end for both Qt and Web
front-end technologies. While MXCuBE3 was developed
on top of the MXCuBE2 back-end which is today
exclusively used for MX experiments, BSXCuBE3 shares
the same back-end solution with a larger set of beamline
applications, further decreasing the maintenance and
development time.

Back-end
The back-end of the application framework (Fig. 1) is

written in Python 3 and can be divided into four main parts:
Web server, Control system integration, Common
application logic, and Application specific components.

Web Server As is the case for MXCuBE3, the
BSXCuBE3 web server is based on a Web Server Gateway

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA115

WEPHA115
1364

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Interface (WSGI) compatible micro web framework called
Flask [15]. A library called Socket.IO is used to provide
bidirectional asynchronous communications such as
events. The web server exposes a REST API for the clients
(Web or Qt) to the underlying framework and beamline
control system. Tools for validation and marshalling of the
REST resources are built on top of Marshmallow [16] and
apispec [17] which also provides Swagger [18]
documentation.

Figure 1: Backend overview.

Control system integration The framework developed
provides the means to integrate with beamline control
systems through a ProtocolHandler. Here, the underlying
instrumentation is made available to the framework
through HardwareObjects which, together with abstract
interfaces and mappings, provide a coherent interface to
the other components of the application. The framework
currently implements ProtocolHandlers for BLISS, Tango,
and FWK2 HardwareRepository.

Common application logic There are a few concepts
that are common to many beamline applications including:

• Beamline calibration - for storing beamline calibration
data

• Session - Handling data associated with the users
currently logged in

• Authentication - For user authentication
• Microscope viewer - video stream with the possibility

to mark regions and points of interest on the sample
• Task queue - for queuing tasks to be performed
• LIMS - integration with Laboratory Information

Management System and meta data handling.

• Schema definition - For defining data models that can
be used on both client and server for input validation
and generic form display.

These concepts are implemented as Core Components
and are in general configurable through YML files.

Application specific logic The framework can be
extended with Components to implement application
specific logic.

Front-end - Web Client
Similarly to MXCuBE3, the BSXCuBE3 UI is

implemented with React, Redux and Bootstrap using
HTML5 and ECMAScript 9. React provides the means to
encapsulate interaction logic and to create reusable UI
components. The components are expressed in Javascript
XML (JSX) [19] a syntactical extension to Javascript
which adds the possibility to use a HTML-like syntax
together with Javascript. This makes it possible to easily
share UI components between the various applications.

A standard build tool chain very similar to the one
adopted in MXCuBE3 [20] is used, it is uses Webpack and
babel to bundle the various assets and compile the sources
down to ECMAScript 5, which has more consistent
support across browsers. This allows the developers to use
the latest features of the Javascript language and still keep
cross browser compatibility.

Data provided to a UI component are handled with the
state management library Redux. Redux keeps the entire
application state in a ‘store’. The Redux store is an
immutable data structure which can only be updated by
dispatching a Redux-action. A Redux-action is an object
that contains the arguments for the state transfer. The state
transformation itself is defined by a pure function called a
reducer that takes the current state and the Redux-action as
parameters and returns the new state (Fig. 2).

Figure 2: React-Redux update cycle.

Both React and Redux rely on shallow comparison
through reference equality to handle updates. A challenge
for developers can be to maintain the immutability contract
that comes with Redux. Failing to do so will cause the
shallow comparison to fail and the component displaying
the data is not updated correctly as a result. There are a few
libraries that aim to help the developer writing the reducing
functions, among others: Immutable.JS [21] seamless-
immutable [22] and ImmerJS [23].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA115

User Interfaces, User Perspective, and User Experience(UX)
WEPHA115

1365

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The Redux reducer is often written as a function
containing a switch statement. This switch statement can
often become large and difficult to manage especially if
native javascript operations like Object.assign and the
spread operator is used for the state transformation.

The front-end part of the general application framework
provides an abstraction for writing the Redux reducers,
actions and selectors. There are corresponding base classes
for each concept called Actions, Reducers and Selectors,
these are combined into a single entity by a class named
Provider.

The Reducer object makes it possible to write the
reducer as an object where each action corresponds to a
member function. The abstraction further provides helper
functions, currently wrapping seamless-immutable, to
handle the state transformation. The idea of the Provider
concept is to reduce risk for mistakes with state
transformation, encapsulating the reducer and
corresponding actions so that they can be easily reused.

Communication with the back-end is done via
Asynchronous JavaScript And XML (AJAX) requests and
websockets. Helper classes wrapping the libraries Axios
[24] and socket.io-client [25] are used to implement token
based authentication.

User Interface
Both MXCuBE3 and BSXCuBE3 have the same key

concepts such as beamline configuration and calibration,
Microscope viewer, a queuing system, one or several types
of sample changers and LIMS integration. This makes it
possible for the two applications to have the same general
look and feel. Indeed, many of the graphical components
developed for MXCuBE3 can be directly reused in
BSXCuBE3.

The overall layout of BSXCuBE3 (Figs. 3 and 4) is very
similar to that of MXCuBE3 with navigation and general
beamline information at the top of the application. The user
is faced with a main menu with an item for each experiment
mode. At the time of writing the different experiment
modes foreseen are: Sample Changer, HPLC, Scan and
Workflow.

• Sample Changer - Experiments using an Arinax
BioSAXS sample changer [26]

• HPLC - Experiments using a High-performance liquid
chromatography (HPLC) device

• Scan - Scans on points or regions of interest on, for
instance, microfluidic chips

• Workflow - A way to create a custom collection
sequence by queuing various predefined scripts in
combination with the experiment types above.

Figure 3: BSXCuBE Welcome page.

Figure 4: BSXCuBE Sample Changer experiment.

CONCLUSION AND FUTURE WORK
The technology stack and overall application structure of

BSXCuBE3 is very similar to that of MXCuBE3, the
development of which has inspired and influenced a new
ESRF application framework. While MXCuBE3 uses
tailored backend solution BSXCuBE3 benefits from the
development of this new framework. Relying on a backend
that will be common for all ESRF beamline control
applications will decrease maintenance and development
time as well as provide better operational support. Further,
the user experience developed in MXCuBE3 can further be
easily reused in BSXCuBE3, a particular asset as the two
applications share a common user community.

ACRONYMS
 BSXCuBE: BioSAXS Customized Beamline Environment
 BioSAXS: Biological small angle X-ray scattering
 MXCuBE3: Macromolecular Xtallography Customized
 Beamline Environment version 3
 MX: Macromolecular Xtallography
 FWK2: Framework 2
 WSGI: Web Server Gateway Interface
 REST: Representational State Transfer
 API: Application Program Interface
 OAV: On axis viewer
 LIMS: Laboratory InforMation System
 XML: eXtensible Markup Language
 JSX: JavaScript XML
 HTML: Hypertext Markup Language
 AJAX: Asynchronous JavaScript And XML
 HPLC: High-performance liquid chromatography

REFERENCES
[1] U. Mueller et al., “MXCuBE3: A New Era of MX-Beamline

Control Begins,” Synchrotron Radiat. News, vol. 30, no. 1,
pp. 22-27, Jan. 2017.

[2] M. Oscarsson et al., “MXCuBE2: the dawn of MXCuBE
Collaboration,” J. Synchrotron Radiat., vol. 26, no. 2, pp.
393-405, Mar. 2019.

[3] D. de Sanctis et al., “ID29: a high-intensity highly
automated ESRF beamline for macromolecular
crystallography experiments exploiting anomalous
scattering,” J. Synchrotron Radiat., vol. 19, no. pt 3, pp.
455-461, May 2012.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA115

WEPHA115
1366

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

[4] D. Flot et al., “The ID23-2 structural biology microfocus
beamline at the ESRF,” J. Synchrotron Radiat., vol. 17, no.
1, pp. 107-118, Jan. 2010.

[5] M. M. G. Thunnisen et al., “BioMAX: The Future
Macromolecular Crystallography Beamline at MAX IV,” J.
Phys. Conf. Ser., vol. 425, no. 7, p. 072012, Mar. 2013.

[6] A. Lausi et al., “Status of the crystallography beamlines at
Elettra,” The European Physical Journal Plus, vol. 130, no.
3, p. 43, Mar. 2015.

[7] ESRF-EBS, http://www.esrf.fr/about/upgrade

[8] reactjs, https://reactjs.org/.

[9] Redux, https://redux.js.org/.

[10] socket.io, https://socket.io/.
[11] React Bootstrap,

https://react-bootstrap.github.io/.
[12] J. Gabadinho et al., “MxCuBE: a synchrotron beamline

control environment customized for macromolecular
crystallography experiments,” J. Synchrotron Radiat., vol.
17, no. 5, pp. 700–707, Sep. 2010.

[13] M. Guijarro, G. Berruyer, J. Klora, and V. Rey-Bakaikoa,
“The Bliss Framework project,” in Proc. Nobugs 2004
Conference, Villigen PSI, Switzerland, paper 00065, 2004.

[14] Bliss, https://gitlab.esrf.fr/bliss

[15] Flask, https://palletsprojects.com/p/flask/.

[16] marshmallow,
https://marshmallow.readthedocs.io/en/stable

[17] apispec,
https://apispec.readthedocs.io/en/stable

[18] Swagger, https://swagger.io/specification/.

[19] JSX Specification,
https://facebook.github.io/jsx/.

[20] M. Oskarsson et al., “MXCuBE3 Bringing MX
Experiments to the WEB”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct.
2017, pp. 180-185.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

[21] immutable-js,
https://github.com/immutable-js/immutable-js

[22] seamless-immutable,
https://github.com/rtfeldman/seamless-
immutable

[23] immer, https://github.com/immerjs/immer

[24] axios, https://github.com/axios/axios

[25] socket.io-client,
https://github.com/socketio/socket.io-client

[26] A. Round et al., “BioSAXS Sample Changer: a robotic
sample changer for rapid and reliable high-throughput X-
ray solution scattering experiments,” Acta Crystallogr. D
Biol. Crystallogr., vol. 71, no. pt 1, pp. 67-75, Jan. 2015.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA115

User Interfaces, User Perspective, and User Experience(UX)
WEPHA115

1367

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

