

16th International Conference on Accelerator and Large Experimental Physics Control Systems

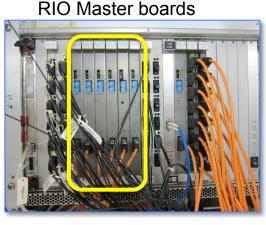
Porting VME-Based Optical-Link Remote I/O Module to a PLC Platform

- an Approach to Maximize Cross-Platform Portability Using SoC

T. Masuda, A. Kiyomichi

Japan Synchrotron Radiation Research Institute (JASRI)

Outline


- Background
 - Optical-linked remote I/O system
 - Platform consideration
- Development of module
 - Design policy
 - Hardware implementation
 - Software implementation
 - Implementation of FPGA logic
- Summary

- VME
 - employed at SPring-8 as FE computers.
- Optical-linked Remote I/O systems
 - utilized to cover widely distributed accelerator equipment.
 - consist of VME-based master boards and several kinds of slave boards.
 - two types of optical-linked remote I/O system
 - RIO system
 - *OPT-VME system*

- RIO system
 - developed by Mitsubishi Electric Co.
 - used since 1997, already **discontinued**.
 - employ over 1,400 slave boards in SPring-8.
 - mainly for SR magnet power supplies control.
 - many of them can be replaced with *OPT-VME system*.
 - developed the compatible slave boards.

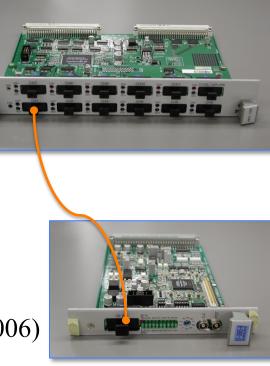
RIO Slave boards

- OPT-VME system
 - developed by SPring-8 at 2001.
 - two types of **VME-based** master boards.
 - OPT-VME
 - OPT-CC

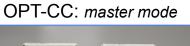
OPT-VME: 4ch single-slot VME board

OPT-CC: 12ch dual-slot VME board

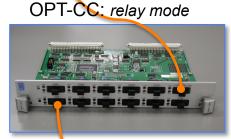
- OPT-VME system
 - developed by SPring-8 at 2001.
 - two types of **VME-based** master boards.
 - OPT-VME
 - OPT-CC
 - employ over 400 slave boards in SPring-8.
 - 10 types of slave boards are available.


a kind of slave board

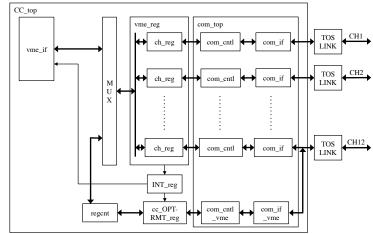
Used for steering magnet PSs control at the booster ring.



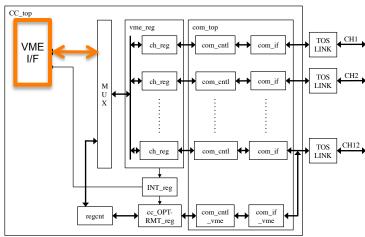
- OPT-VME system
 - developed by SPring-8 at 2001.
 - two types of **VME-based** master boards.
 - OPT-VME
 - OPT-CC
 - employ over 400 slave boards in SPring-8.
 - 10 types of slave boards are available.
 - original communication protocol (OPT-Protocol 2006)
 - Only support point-to-point connection.



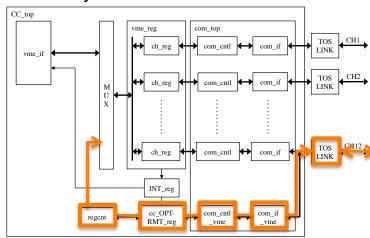
- OPT-VME system
 - ОРТ-СС
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled from a master.

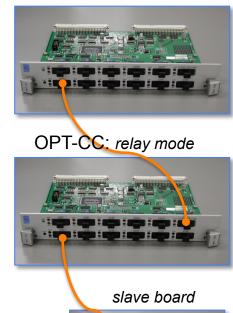


slave board


- OPT-VME system
 - ОРТ-СС
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.

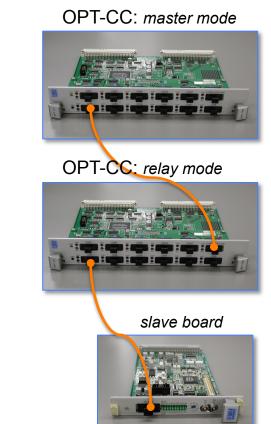
- OPT-VME system
 - ОРТ-СС
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.


In a master mode


- OPT-VME system
 - OPT-CC
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.

In a relay mode

- OPT-VME system
 - OPT-CC
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.
 - communication procedure with the remote slave board is **implemented in the device driver** for the master board.


OPT-CC: master mode

- OPT-VME system
 - ОРТ-СС
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.
 - communication procedure with the remote slave board is **implemented in the device driver** for the master board.

The device driver is responsible for the high-level communication procedures including the remote slave control.

Platform Consideration

• VME

- Passed over 30 years, become out-of-date.
- Two major issues;
 - Lack of bandwidth.
 - Discontinued the de-fact standard bus-bridge chip Tsi148.

 \rightarrow This has been a big problem for VME users.

• considering the next-generation alternative platform.

Platform Consideration

• MTCA.4

- Decided to introduce MTCA.4 as a high-end platform.
- Analog-based old SR LLRF system controlled by VME is planed to be replaced with MTCA.4-based digital LLRF system.

Platform Consideration

- MTCA.4
 - Decided to introduce MTCA.4 as a high-en
 - Analog-based old SR LLRF system controlled by VME is planed to be replaced with MTCA.4-based digital LLRF system.

- Linux PLC (Programmable Logic Controller)
 - one of the candidate to **cover a low-end side**.
 - e.g. e-RT3 (FA-M3) by Yokogawa Electric Co.
 - already applied as front-end computers in both SPring-8 and SACLA.

- Developed the new master module of the OPT-VME system based on the e-RT3 platform.
 - To effectively utilize the resources of large amount of *OPT-VME* slave board (~400).
 - RIO slave boards (~1,400) are also integrated by replacing OPT-VME based compatible slave boards.
 - Considering alternative platform portability such as a PCI Express (MTCA.4)

Development of the new master module

• OPT-PLC

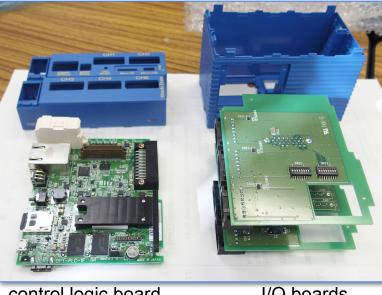
 e-RT3-based new master module for the OPT-VME system.

SoC	Xilinx Zynq 7015 : XC7Z015-1CLG485C
Memory	1GB DDR3-SDRAM 128MB QSPI Flash
LAN	1 port (RJ-45 Connector)
MicroSD	1 port (Micro-SD socket)
UART	1 port (Micro-USB connector)
High-Speed Serial I/F	4 pairs x 6.25GBps in a 70pins stacking connector (Molex 53625-0774)
JTAG	1 port
Power	+5V±5%

OPT-PLC module

- Design Policies
 - 1. Equip with as many optical channels as possible.
 - 2. Separate an I/O unit from a logic control unit.
 - 3. Control the module using the e-RT3 general-purpose device driver.
 - 4. Control the module from a sequence CPU in addition to a Linux CPU.

OPT-PLC module


- Design Policies
 - 1. Equip with as many optical channels as possible.
 - 2. Separate an I/O unit from a logic control unit.
 - 3. Control the module usin \rightarrow Hardware Implementation | Iriver.

4. Control the module from a sequence CPU in addition to a Linux CPU.

Hardware Implementation

- Consists of three PCBs.
 - Separate two I/O boards from the control logic board.
 - Connected using 70 pins stacking connector each other.
 - *PCB* is a little small to mount the FMC.
- Equipped with 5 optical channels.

control logic board

I/O boards

OPT-PLC module

• Design Policies

- 1. Equip with as many optical channels as possible.
- 2. Separate an I/O unit from a logic control unit.
- 3. Control the module using the e-RT3 general-purpose device driver.
- 4. Control the module f CPU.

→ Implementation of Software & FPGA logic

OPT-PLC module

• Design Policies

- 1. Equip with as many optical channels as possible.
- 2. Separate an I/O unit from a logic control unit.
- 3. Control the module using the e-RT3 general-purpose device driver.
- 4. Control the module f CPU.

→ Implementation of Software & FPGA logic
Keyword : SoC

e-RT3 General-Purpose Device Driver

- supplied and supported by Yokogawa Electric Co.
- primitive device driver to handle memory access and interrupt.

e-RT3 General-Purpose Device Driver

- supplied and s
- primitive device interrupt.

Background

ICALEPCS2017

- **OPT-VME** system
 - OPT-CC
 - also available in the relay-mode.
 - max. 132 slave boards can be controlled.
 - realized by switching control I/F.
 - communication procedure with the remote slave board is **implemented in the device driver** for the

master board.

The device driver is responsible for the high-level communication procedures including the remote slave control.

OPT-CC: master mode

slave board

T. Masuda (JASRI Porting the VME-Based Optical-Link Remote I/O Module to a PLC Platform - an Approach to Maximize Cross-Platform Portability Using SoC

e-RT3 General-Purpose Device Driver

- supplied and s Background
- primitive device interrupt.
- OPT-VME system
 - ОРТ-СС

CALEPCS2017

- also available in the relay-mode.
 - max. 132 slave boards can be controlled.

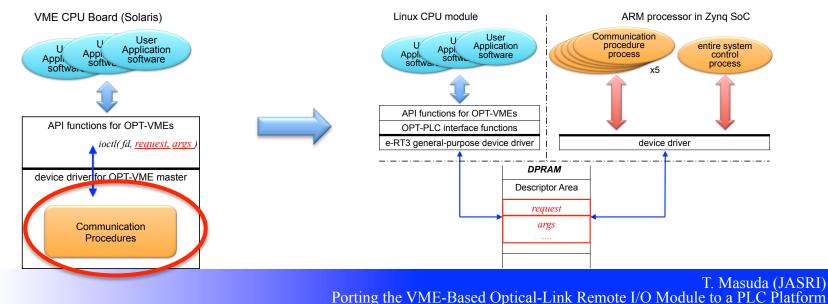
OPT-CC: relay mode

How do we implement this high-level communication procedures?

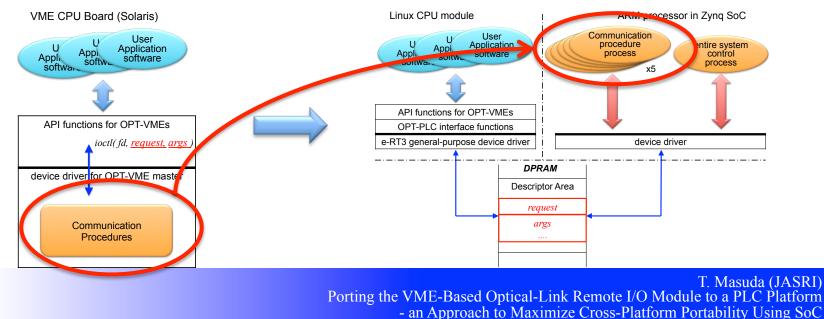
board is implemented in the device driver for the

master board.

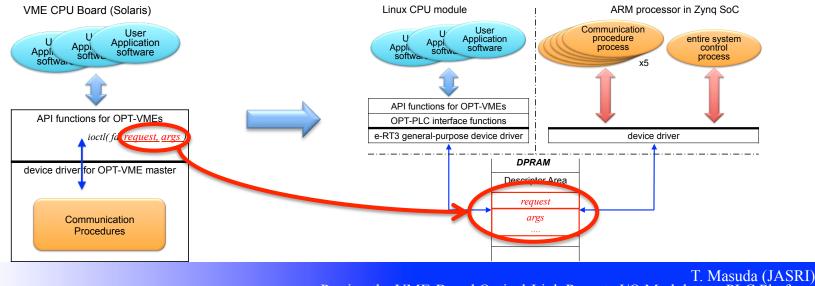
The device driver is responsible for the high-level communication procedures including the remote slave control.


slave board

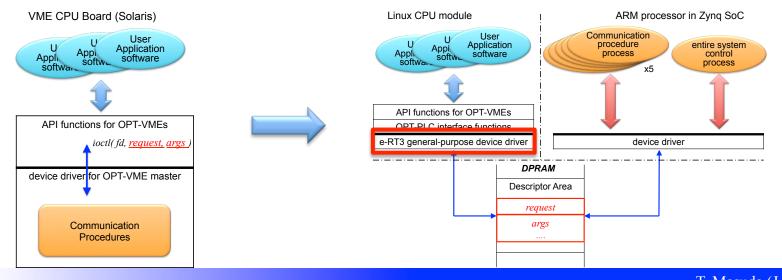
T. Masuda (JASRI) Porting the VME-Based Optical-Link Remote I/O Module to a PLC Platform - an Approach to Maximize Cross-Platform Portability Using SoC


- Adopt SoC (Xilinx Zynq 7000)
- Implement the high-level communication procedures as application software running on ARM Linux in SoC.

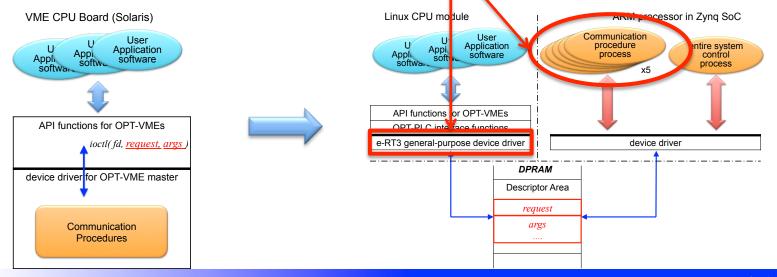
- an Approach to Maximize Cross-Platform Portability Using SoC



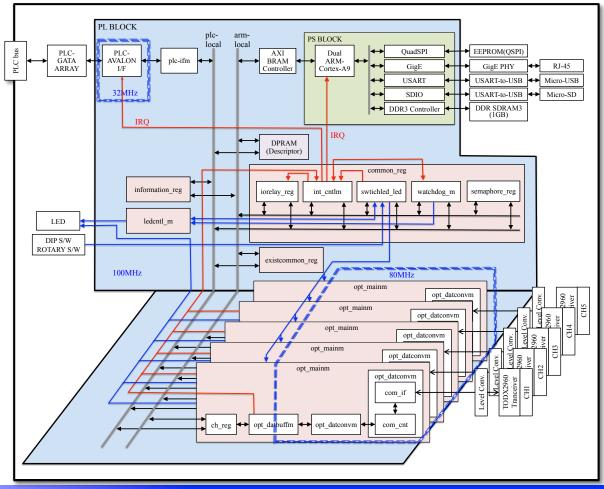
- Adopt SoC (Xilinx Zynq 7000)
- Implement the high-level communication procedures as application software running on ARM Linux in SoC.


ICALEPCS2017

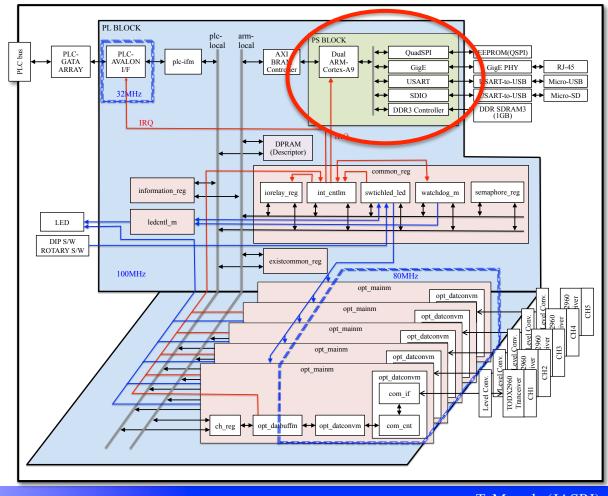
- Adopt SoC (Xilinx Zynq 7000)
- Implement the high-level communication procedures as application software running on ARM Linux in SoC.



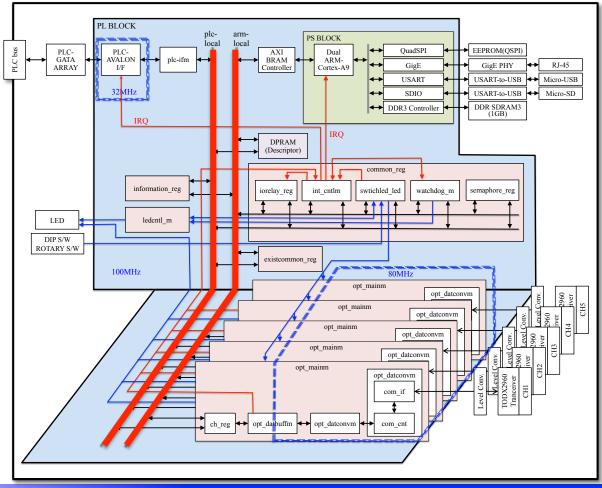
- Adopt SoC (Xilinx Zynq 7000)
- Implement the high-level communication procedures as application software running on ARM Linux in SoC.

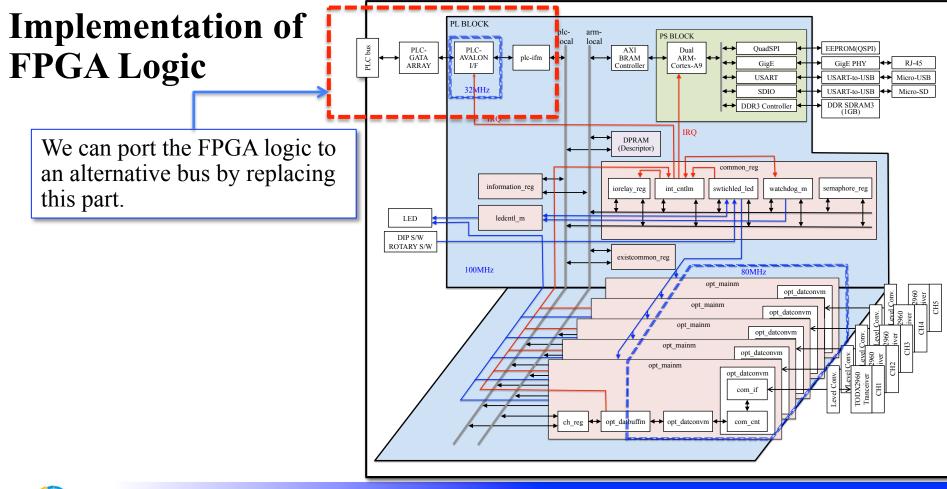


- Adopt SoC (Xilin) As a result the device driver of platform side is simplified, the module portability to other platform is enhanced. Implement the high-never communication procedures as application software running on ARM Linux in SoC.



Implementation of FPGA Logic




Implementation of FPGA Logic

Implementation of FPGA Logic

Summary

- We have successfully ported the VME-based optical-link remote I/O module to the e-RT3 platform.
- The developed module OPT-PLC is equipped with Zynq 7000 SoC to build the communication procedures as the application S/W on the ARM Linux.
 - the interface with the PLC bus is simplified and the e-RT3 general-purpose device driver is available.
- We can port the developed FPGA logic to an alternative bus e.g. the PCI express by replacing the PLC bus interface block in the PL part.
- The interface simplification enhances portability.

16" International Conference on Accelerator and Large Experimental Physics Control Systems

Thank you for your attention.

