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The task
>>>>>Accelerator controls need complex devices servers
>>>>>Requires communication to FPGAs, micro-

controllers, frontend and middelware PCs with
different protocols via PCIe, Ethernet, etc.

>>>>>Devices should be used in various other facilities with
different control systems
−XFEL and FLASH at DESY using DOOCS
−ELBE at HZDR using OPC UA
−FLUTE at KIT using EPICS 3
−TARLA in Ankara using EPICS 4

ChimeraTK
>>>>>Framework to abstract applications from the details

of hardware and control system protocols
>>>>>Write device servers which are intrinsically control

system independent
>>>>>Using modern C++ 11
>>>>>Open source software, (L)GPL

The DeviceAccess library
>>>>>Access to register-based devices
>>>>>Common interface to backends which implement

different communication protocols
>>>>>RegisterAccessor objects represent registers

as process variables (common interface with
ControlSystemAdapter)

>>>>>Register name mapping: Identify registers by name
instead of numerical address

>>>>>Device name mapping: Identify devices by
functional name (independent from backend)

Available backends
>>>>>PCI Express
>>>>> Simple network protocol for FPGAs: ReboT

(Register-based over TCP)
>>>>>DOOCS backend
>>>>>Dummy backend / VirtualLab
>>>>>LogicalNameMapping backend for more abstraction

from implementation details of the firmware
Custom backends can be loaded at run time.
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Software for interactive access and scripting
>>>>>Language bindings for Python and Matlab
>>>>>Linux command line tool
>>>>>Graphical user interface
Convenient tools for firmware development: Direct hardware access
without having to write code.

ApplicationCore
>>>>>Application modules implement the algorithms
>>>>>Connection code combines modules and creates an

application

Connections
Requirement: Intuitive syntax that minimises number
of code lines
>>>>>Use any pushing sender as trigger to connect a polled

sender to a pushed receiver

>>>>> “Fan out” to distribute variables

>>>>>Connect all variables with the same name in a single
command

>>>>>Group variables and modules to structure the code
>>>>>Plot tree with variable content of an application

Application modules
Abstraction: If a module does not know if a process
variable is coming from the hardware, the control
system or another software module, it will not be
sensitive to specifics of a particular middleware.
>>>>> Interface consists of input and output variables
>>>>>One thread per module
>>>>>Two types of variables:

− active sender pushes updates to passive receiver
− passive sender is polled by active receiver

>>>>>Use blocking read to synchronise to other threads
and to hardware
− on a single variable
− on all variables or any variable in a group

>>>>>Hierarchical variable names
>>>>>Advanced modelling with tags on variables

ControlSystemAdapter library
Process variables are implemented as lock-free
sender/receiver pairs
>>>>>Avoid locking problems with middleware
>>>>>Lock-free queues allow different read-modes

− non-blocking read : return last received value if
queue is empty

− read latest: empty the queue and return last
received value

− blocking read : wait for new data if queue is empty
>>>>>Basis for inter-thread communication, also in

ApplicationCore
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Control system integration
The ChimeraTK ControlSystemAdapter
is complemented by a middleware-specific
part (DOOCS Adapter, OPC UA Adapter,
EPICS Adapter)
>>>>>Publish process variables via middleware
>>>>>Define variable name visible in control system
>>>>>Define middleware dependent features/data

types (server-side histories, display properties)
>>>>>Application independent, configured via config

file

Software repositories
>>>>> https://github.com/ChimeraTK/DeviceAccess
>>>>> https://github.com/ChimeraTK/ControlSystemAdapter
>>>>> https://github.com/ChimeraTK/ApplicationCore

>>>>> https://github.com/ChimeraTK/ControlSystemAdapter-DoocsAdapter
>>>>> https://github.com/ChimeraTK/ ControlSystemAdapter-OPC-UA-Adapter
>>>>> http://oss.aquenos.com/svnroot/epics-mtca4u Presenter
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