
LATEX TikZposter

Abstracted Hardware and Middleware Access in Control Applications •
M. Killenberg, M. Heuer, M. Hierholzer, L. Petrosyan, C. Schmidt, N. Shehzad, T. Kozak, G. Varghese, M. Viti (DESY,
Germany), S. Marsching (aquenos GmbH, Germany), A. Piotrowski (FastLogic, Poland), R. Steinbrück,
M. Kuntzsch (HZDR, Germany), P. Prędki (Rapid Development, Poland), C. P. Iatrou, J. Rahm (TU Dresden,
Germany), K. Czuba, A. Dworzanski (Warsaw Univ. of Technology, Poland)

Abstracted Hardware and Middleware Access in Control Applications •
M. Killenberg, M. Heuer, M. Hierholzer, L. Petrosyan, C. Schmidt, N. Shehzad, T. Kozak, G. Varghese, M. Viti (DESY,
Germany), S. Marsching (aquenos GmbH, Germany), A. Piotrowski (FastLogic, Poland), R. Steinbrück,
M. Kuntzsch (HZDR, Germany), P. Prędki (Rapid Development, Poland), C. P. Iatrou, J. Rahm (TU Dresden,
Germany), K. Czuba, A. Dworzanski (Warsaw Univ. of Technology, Poland)

The task
>>>>>Accelerator controls need complex devices servers
>>>>>Requires communication to FPGAs, micro-

controllers, frontend and middelware PCs with
different protocols via PCIe, Ethernet, etc.

>>>>>Devices should be used in various other facilities with
different control systems
−XFEL and FLASH at DESY using DOOCS
−ELBE at HZDR using OPC UA
−FLUTE at KIT using EPICS 3
−TARLA in Ankara using EPICS 4

ChimeraTK
>>>>>Framework to abstract applications from the details

of hardware and control system protocols
>>>>>Write device servers which are intrinsically control

system independent
>>>>>Using modern C++ 11
>>>>>Open source software, (L)GPL

The DeviceAccess library
>>>>>Access to register-based devices
>>>>>Common interface to backends which implement

different communication protocols
>>>>>RegisterAccessor objects represent registers

as process variables (common interface with
ControlSystemAdapter)

>>>>>Register name mapping: Identify registers by name
instead of numerical address

>>>>>Device name mapping: Identify devices by
functional name (independent from backend)

Available backends
>>>>>PCI Express
>>>>> Simple network protocol for FPGAs: ReboT

(Register-based over TCP)
>>>>>DOOCS backend
>>>>>Dummy backend / VirtualLab
>>>>>LogicalNameMapping backend for more abstraction

from implementation details of the firmware
Custom backends can be loaded at run time.

Command Line Tools

Matlab Bindings

Python Bindings
GUI:

Qt Hardware Monitor

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Software for interactive access and scripting
>>>>>Language bindings for Python and Matlab
>>>>>Linux command line tool
>>>>>Graphical user interface
Convenient tools for firmware development: Direct hardware access
without having to write code.

ApplicationCore
>>>>>Application modules implement the algorithms
>>>>>Connection code combines modules and creates an

application

Connections
Requirement: Intuitive syntax that minimises number
of code lines
>>>>>Use any pushing sender as trigger to connect a polled

sender to a pushed receiver

>>>>> “Fan out” to distribute variables

>>>>>Connect all variables with the same name in a single
command

>>>>>Group variables and modules to structure the code
>>>>>Plot tree with variable content of an application

Application modules
Abstraction: If a module does not know if a process
variable is coming from the hardware, the control
system or another software module, it will not be
sensitive to specifics of a particular middleware.
>>>>> Interface consists of input and output variables
>>>>>One thread per module
>>>>>Two types of variables:

− active sender pushes updates to passive receiver
− passive sender is polled by active receiver

>>>>>Use blocking read to synchronise to other threads
and to hardware
− on a single variable
− on all variables or any variable in a group

>>>>>Hierarchical variable names
>>>>>Advanced modelling with tags on variables

ControlSystemAdapter library
Process variables are implemented as lock-free
sender/receiver pairs
>>>>>Avoid locking problems with middleware
>>>>>Lock-free queues allow different read-modes

− non-blocking read : return last received value if
queue is empty

− read latest: empty the queue and return last
received value

− blocking read : wait for new data if queue is empty
>>>>>Basis for inter-thread communication, also in

ApplicationCore

"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

1 0

2 3

(empty)

Control system integration
The ChimeraTK ControlSystemAdapter
is complemented by a middleware-specific
part (DOOCS Adapter, OPC UA Adapter,
EPICS Adapter)
>>>>>Publish process variables via middleware
>>>>>Define variable name visible in control system
>>>>>Define middleware dependent features/data

types (server-side histories, display properties)
>>>>>Application independent, configured via config

file

Software repositories
>>>>> https://github.com/ChimeraTK/DeviceAccess
>>>>> https://github.com/ChimeraTK/ControlSystemAdapter
>>>>> https://github.com/ChimeraTK/ApplicationCore

>>>>> https://github.com/ChimeraTK/ControlSystemAdapter-DoocsAdapter
>>>>> https://github.com/ChimeraTK/ ControlSystemAdapter-OPC-UA-Adapter
>>>>> http://oss.aquenos.com/svnroot/epics-mtca4u Presenter

Martin Killenberg
martin.killenberg@desy.de

ICALEPCS2017, Barcelona, Spain, 10th October 2017, PosterID TUPHA178

