

Tango Based Software of Control System of LIA-20

A. Senchenko^{1,2}, G. Fatkin^{1,2}, S. Serednyakov^{1,2}, P. Selivanov¹ ¹BINP SB RAS, ²NSU email: a.i.senchenko@inp.nsk.su

Introduction

Data Rates

The linear induction accelerator LIA-20 for radiography is a pulsed machine designed to provide three consecutive electron bunches. Since every pulse is a distinctive experiment, it is of high importance to provide coherence of the facility state and the experimental data. This paper presents overall software architecture. Challenges and particular approaches to designing of a pulsed machine control system using Tango are discussed.

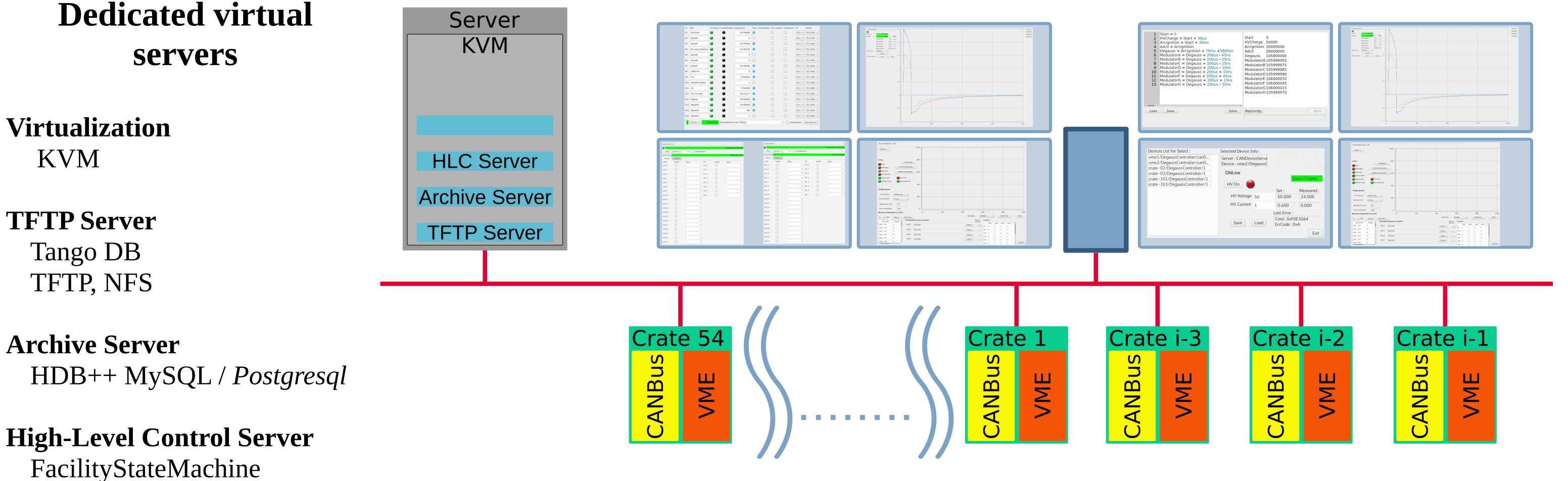
Control System Project

Channel type	Number o	of channels	Data rate (1-bunch)			
	whole per VME		whole	per VME		
	system	crate	system	crate		
Fast (<10 us)	594	22	5.7	214		
oscillograms			MB/cycle	KB/cycle		
Slow oscillograms	1485	55	13.5	0.5		
			MB/cycle	MB/cycle		
Timing system	1485	55	13.5	0.5		
			KB/cycle	KB/cycle		
Interlocks	1485	55	13.5	0.5		
			KB/cycle	KB/cycle		
Technological	1000	~40	513 KB/min	19 KB/min		
controls						
	6000	~280	19.3	3.5		
			MB/cycle	MB/cycle		
			+	+		
			540 KB/min	19.5		
				KB/min		

For more details visit THPHA052

The software of the control system is based on Tango 8. At the current moment almost all VME modules are provided with tango devices and GUI clients. Low-level tango devices are implemented in C++. Client applications are created using Python language and PyQt/PyTango/Taurus. HDB++ with Mysql backend was chosen as an archival system.

Further development will be directed to the creation of high-level tango devices and possible introduction of Sardana. Another important field of research is the Facility State And Regime Managment System.


Application Software

User software comprises Mimic Diagram, Time Editor, GUI for tango devices and common tango utilits. **Mimic Diagram** visualizes a summary of all subsystem's states. It is based on PyQt/QWebKit and SVG. **Time Editor** is a editting tool for timing diagrams. It provides operator the ability to prepare, verify and apply timing

Секции ускоряющие короткие Секции ускоряющие длинные Стойки управления и импульсного питания Зарядные 2 1 3 2 2 3 1 2 Стойки модуляторные

54 53	52 51 50 49	48 47 46 45	44 43 42 41	40 39 38 37	36 35 34 33	32 31 30 29	28 27 26 25	24 23 22 21	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1	

Interlock, Timing, etc.

	CANBus	VME
Tango	CanDevcieServer Degausing Filament SM CEAC124 CGVI COMOD	VmeDevcieServer ADC4x250 ADC32 DL250 Timer-L Timer-S
High level I/O	CanWrapper	ADC4x250 ADC32 DL250 Timer-L Timer-S VME_CXX
Low level I/O	can4linux SocketCAN	VME Utils VMEWrapper

Low level I/O layer consists of CANBus driver (can4linux or SocketCAN) and VME wrapper.

High level I/O layer provides an abstraction libraries for access to CANBus and VME and hides implementation details. A set of Device Drivers is implemented on top of VME wrapper.

Tango is the top layer. It contains tango interfaces to the underlying Device Drivers. To reduce VME controller's resource consumption and simplify hardware access appropriate tango devices are aggregated in two device servers: CANBus and VME.

ICALEPCS 2017 - TUPHA169