
PLC Factory: Automating routine tasks in
large-scale PLC software development

G. Ulm, F. Bellorini, D. Brodrick, R. Fernandes,
N. Levchenko, D. Piso Fernandez

PROBLEM
The European Spallation Source ERIC (ESS)
in Lund, Sweden, is building large-scale
infrastructure that is projected to include
hundreds of programmable logic controllers
(PLCs). The problem is:

1. PLCs directly control hardware, thus
programming errors can have serious
consequences

2. Programming PLCs is repetitive and
error-prone

3. Some repetitions are not trivial to auto-
mate

CONTRIBUTIONS
PLC Factory is an application for automat-
ing repetitive tasks associated with PLC pro-
gramming. It relies on an in-house config-
uration database, CCDB, which stores infor-
mation for each device instance and device
type. PLC Factory is a template-based sub-
stitution engine that performs the following
tasks:

1. direct substitution, i.e. for a given de-
vice d, use property p as specified in the
corresponding CCDB entry for d

2. identification of shared properties be-
tween devices, in order to remove re-
dundancies in CCDB

3. automatic counters management for
specifying PLC memory address off-
sets in EPICS database records

SOLUTION

The substitutions outlined in Contributions re-
move most if not all of the repetitions of
large-scale PLC software development. We
highlight four aspects of PLC Factory.

Dependency Trees CCDB describes depen-
dency relationships between devices; a depen-
dency tree explicitly models those. In the ex-
ample below, r is the root device and controls
the devices u1 and u2, of which the former
controls v11 and v12, and the latter v21. Trees
can be arbitrarily deep.

Template Files Template files are text files
with a fixed structure. PLC Factory con-
sumes template files for creating EPICS
database records files and SCL code blocks
for TIA Portal. Device types may have
template files with particular IDs attached
to it in CCDB. PLC Factory dynamically re-
places fields within a template file. A sim-
plified example is the substitution of a field
DEVICE_NAME by the concrete name of a de-
vice that is an instance of the device type this
template is associated with.

Substitution Engine Pseudo-code of the
core of the substitution engine is given be-
low. The operator ⊕ is a shorthand for pro-
cessing template files. It is applied to a de-
vice instance x and a specific template. Tem-
plates are retrieved by a function t that takes
as its input a template ID and the device type
of x, which is determined by the function d
applied to device x. Thus, the resulting oper-
ation is x⊕ t(id , d(x)).

In addition, we define the header file
h(id , d(r)) as well as the footer file f(id , d(r)).

Data: CCDB, root device r, template
ID id

Result: list out containing text for
post-processing

begin
out ← ∅ . collected
output
ds ← r . list of devices
while ds not ∅ do

d← ds.pop()
cs← d.controls() . CCDB
lookup
while cs not ∅ do

c← cs .pop()
if t(id , d(c)) ∈ CCDB
then

out ← out + c ⊕
t(id , d(c))
cs ′ ← c.controls()
ds ← ds + cs ′

end
end

end
out ← r⊕ h(id , d(r)) + out + r⊕
f(id , d(r))

end

PLCF] PLCF] is an embedded domain-
specific language for flexible substitutions. It
solves two problems: resolving shared prop-
erty values and manual memory manage-
ment. For the former, consider the expres-
sion [PLCF# ^(Offset) + 1]. Here, PLC
Factory looks up the property Offset by
traversing the device tree upwards. For the
latter case, consider the expression [PLCF#
^(Offset) + Counter1]. In this exam-
ple, counter variables automate assigning
memory addresses. The user only has
to specify which counter should be incre-
mented. A large skeleton file for TIA Portal
may contain hundreds of memory locations.
PLC Factory completely automates their def-
inition and ensures there are no overlaps.REFERENCES

[1] Borrowman, A. J., & Taylor, P. (2016, July). Can
your software engineer program your PLC?. In
SPIE Astronomical Telescopes+ Instrumentation
(pp. 99131S-99131S). International Society for Optics
and Photonics.

[2] Casas-Cubillos, J., Gomes, P., Gayet, P., Varas, F. J.,
Sicard, C. H., & Pezzetti, M. (2002). Application of
object-based industrial controls for cryogenics (No.
CERN-LHC-2002-007-IAS).

[3] Cockrell, L., & Sander, T. M. (1992). Selecting a
man/machine interface for a PLC-based process
control system. IEEE transactions on industry appli-
cations, 28(4), 945-953.

[4] Dalesio, L. R., Kraimer, M. R., & Kozubal, A. J. (1991,
November). EPICS architecture. In ICALEPCS (Vol.
91, pp. 92-15).

[5] Zaharieva, Z., Peryt, M., & Martin Marquez, M.
(2011, October). Database foundation for the con-
figuration management of the CERN accelerator
controls systems. In Conf. Proc. (Vol. 111010, No.
CERN-ATS-2011-206, p. MOMAU004).

FUTURE WORK
PLC Factory is a command-line application.
We intend to turn it into the backbone of
a web-based GUI-driven application. Fur-
ther, we consider extending PLC Factory by
adding an exporter to automatically gener-
ate operator interfaces (OPIs). PLC Factory
can be easily tailored to use other database
backends as well, so adding interfaces would
be another suitable next step. However, PLC
Factory does not rely on domain knowledge.
Due to its generic approach to template pro-
cessing it could be used in many other do-
mains as well, as it is a universal template-
based substitution engine.

SOURCE CODE
PLC Factory has been written in Python
2.7. The application is used in production
and is actively maintained by ESS. We made
the source code available under the third
version of the GNU General Public License
(GNU GPLv3). The project repository is:

https://bitbucket.org/
europeanspallationsource/
ics_plc_factory.

RESULTS
The time complexity of PLC Factory is O(n),
where n the number of devices. On a 2011
MacBook Air (1.8 GHz), PLC Factory pro-
cesses three different template IDs for a tree
with 40 devices in 7 seconds. Manually cre-
ating those files would take many hours.


