
PREVENTING	RUN-TIME	BUGS	AT  
COMPILE	TIME	USING	C++*

Abstract 
In	order	for	a	system	to	be	reliable,	its	software	needs	to	be	carefully	designed.	Despite	our	best	efforts,	however,	errors	occur	and	we	end	

up	having	to	debug	them.	Unfortunately,	debugging	an	embedded	system	changes	its	dynamics,	making	it	difficult	to	find	and	fix	
concurrency	issues.	This	paper	describes	techniques,	using	C++,	making	it	impossible	to	write	code	susceptible	to	certain	run-time	bugs.	A	

concurrency	library,	developed	at	Fermilab,	is	used	in	the	examples	illustrating	these	techniques.

R.	Neswold 
FNAL,	Batavia,	IL	USA

* FNAL is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

How	can	C++	Help?

SEM_ID mtx;  
int data;  
 
void f()  
{  
 semTake(mtx, WAIT_FOREVER);  
 if (ERROR == someFunction(data)) { 
 semGive(mtx);  
 return;  
 }  
 data = anotherFunction();  
 semGive(mtx);  
 someThirdFunction();  
}

Mutex mtx;  
static int data;  
 
typedef Mutex::Lock<&mtx> LockType;  
 
STATUS someFunction(LockType const&, int); 
int anotherFunction(LockType const&);  
 
void f()  
{  
 {  
 LockType lock;  
 
 if (ERROR == someFunction(lock)) 
 return;  
 anotherFunction(lock);  
 }  
 someThirdFunction();  
}

Problems	with	C	APIs:

Using	Templates	to	Generate	Code	and	Specialize	Interfaces:

ReadingProxy<uint16_t> reading(req); ReadingProxy<uint32_t[16]> reading(req);

if (req->length != sizeof(uint16_t))  
 return ERR_BADLEN;  
if (req->offset != 0)  
 return ERR_BADOFF;

if (req->length % sizeof(uint32_t) != 0) 
 return ERR_BADLEN;  
if (req->offset % sizeof(uint32_t) != 0) 
 return ERR_BADOFF;  
if (req->length + req->offset > sizeof(uint32_t) * 16) 
 return ERR_BADLENOFF;

uint16_t operator=(uint16_t const&);
void assignAt(size_t, uint32_t const&) const; 
size_t total() const;  
size_t offset()const;

A	templated	class	is	defined	to	validate	data	requests	from	the	network	to	a	driver	handler.	It’s	
job	has	two	responsibilities.	1)	make	sure	the	length	and	offset	parameters	match	the	size	of	the	
driver’s	data	and	2)	write	the	data	to	a	buffer	destined	for	the	network	in	the	correct	byte-order.

We	define	the	class	to	check	the	length	and	offset	in	the	constructor.	If	they	are	invalid,	throw	an	
exception.	If	the	request	is	good,	the	object	is	created.	Methods	of	the	class	handle	transforming	
native	data	to	network	data.

This	first	handler	only	returns	16-bit	integers: This	next	handler	returns	any	subset	of	a	16-
element	array	of	32-bit	integers:

Its	template	generates… Its	template	generates…

…	the	constructor,	containing	some	simple	tests	to	
make	sure	the	request	is	for	a	single	16-bit	value

…	an	assignment	operator	which	takes	a	16-bit	
value	and	writes	it	to	the	request’s	output	buffer

…	the	constructor,	containing	more	complicated	
tests	(length	and	offset	are	multiple	of	size,	etc.)

…	an	array-like	interface	for	writing	to	the	buffer

With	C,	there	are	many	mundane	details	with	which	to	contend	
that	make	it	hard	to	focus	on	the	overall	design.

C++		objects	have	a	strictly	defined	lifetime	which	can	be	
leveraged	to	manage	resources.		

Programmer	is	
responsible	for	

resource	management

Must	handle	early	
function	returns

Nothing	forces	the	code	
to	lock	the	mutex	before	

using	the	data

Functions	don’t	know	if	
mutex	is	locked	—	may	
require	recursive	mutex

Define	functions	that	
atomically	change	the	

shared	state
Lock	specifies	which	

mutex	to	use

Functions	with	lock	parameters	
know	they	own	the	mutex	—	no	

need	for	recursive	locks

Functions	which	add	an	(unused)	
lock	to	their	signature	require	

ownership	of	the	mutex

Resource	usage	is	
handled	by	the	compiler

Language	allows	you	to	
ignore	return	values	—		error	
conditions	aren’t	handled

