
EXPERIENCE WITH STATIC PLC CODE ANALYSIS
AT CERN

C. Tsiplaki, B. Fernández, E. Blanco, CERN, Geneva, Switzerland THPHA160

‣ ...

‣ ….

Pattern-based
requirement

Formal intermediate
model (CFG)

CBMC input
(C code for verification) Verification result

Formal requirement
(temporal logic) nuXmv model

SCL code AST

...
Static Analysis Rules

Motivation

Static analysis

Our solution: extending PLCverif

Improve the quality of UNICOS PLC programs Static analysis

UNICOS PLC programs
‣ Large PLC programs based on Library of objects
 Function Blocks (FBs)
‣ Programs generated by the UNICOS Generation tool
‣ Most common PLC languages
 ST (Schneider) and SCL (Siemens)

Problems
‣ Complex expressions, specific naming conventions,
 dead code, code repetition, potential concurrency
 problems (PLC interrupts), unused variables,
 multiple assignment of output variables, etc.
‣ Lack of formal and complete specification

What is it?
‣ Technique that examines a program without executing it
‣ Similar to code review or code comprehension performed by automated tools
‣ Leads to the early detection of bugs
‣ Good complement to testing and formal verification

Which method?
‣ Rule-based AST (Abstract Syntax Tree) analysis, control-flow analysis,
 data-flow analysis, call graph analysis, etc.

What can we detect?
‣ Naming conventions violations, bad code smells (e.g. dead or duplicated code),
 overcomplicated expressions, multitasking problems, etc.

Challenges
‣ Lack of Static PLC Code Analysis tools comparing with general purpose programing
languages
‣ Several researchers and companies are working to bring static analysis to PLC programs
 but still far from being a common practice in this industry
‣ UNICOS specific code guidelines implies specific static analysis rules for our programs

Outcome
‣ First prototype of AST-based basic static analysis rules
‣ Applied to UNICOS object Function Blocks (SCL language)
‣ Detection of naming convention violations in our code
‣ Detection of problematic structure that could lead to maintainability

 and readability problems

‣ Add new and more complex AST-based rules
‣ Integrate more static analysis methods in PLCverif

PLCverifPlcCode

FunctionDecl

- String name
- Type returntype

<<enum>>
BlockType

OB
FB
FC

DataBlockDecl UdtDecl

DeclarationBody

ConstantDeclBlock
VariableDeclBlock

- VarDeclType type
StatementList

Statement

NamedConst

- String name
- String value

VariableDecl

- String name
- Type type

IfStatement

- Expression condition
- StatementList thenStatements
- StatementList elseStatements

CallStatement

- FunctionDecl calledFunc

CallParameter

- VariableDecl parameter
- Expression rightValue

AssignmentStatement

- VariableDecl leftValue
- Expression rightValue

1

*
*

*

1

*

1
*

*

*
*

*

parameters

Our goal is to be one step closer to ensure the reliability of our PLC
programs by applying static analysis, complementing the existing model

checking methodology

Static Analysis in PLCverif Future work

PLCverif methodology
‣ Designed at CERN to apply model checking to PLC programs
‣ Possibility to be extended to apply rule-based AST static analysis (modular
 approach)

PLCverif AST
‣ SCL programs are represented in the AST as PlcCode objects which contain:
 block declarations (FCs, FBs and OBs), data block declarations and user-defined

 type declarations
‣ Static analysis rules can be applied directly to the AST using predefined methods
 (which simplify the logic of the rules)

Static analysis in the PLCverif enviroment
‣ Currently nineteen basic static analysis rules were developed in JAVA
‣ The rules mainly concern: UNICOS naming conventions and potential code smells
 (nested Ifs, dead code, etc.)

Limitations
‣ Not everything can be resolved with the AST method
‣ Concurrency problems may require the use of different static analysis methods (e.g.
 call graph techniques)

Goal

Approach

CERN Beams Department
Industrial Controls and Safety Systems Group (ICS)

