
WEB EXTENSIBLE DISPLAY MANAGER*

R. Slominski, JLab, Newport News, VA 23606, USA
T. Larrieu, JLab, Newport News, VA 23606, USA

Abstract
Jefferson Lab’s Web Extensible Display Manager

(WEDM) allows staff to access EDM control system
screens from a web browser in remote offices and from
mobile devices. Native browser technologies are
leveraged to avoid installing and managing software on
remote clients such as browser plugins, tunnel applications,
or an EDM environment. Since standard network ports are
used firewall exceptions are minimized. To avoid security
concerns from remote users modifying a control system,
WEDM exposes read-only access and basic web
authentication can be used to further restrict access.
Updates of monitored EPICS channels are delivered via a
Web Socket using a web gateway. The software translates
EDM description files (denoted with the edl suffix) to
HTML with Scalable Vector Graphics (SVG) following the
EDM’s edl file vector drawing rules to create faithful
screen renderings. The WEDM server parses edl files and
creates the HTML equivalent in real-time allowing existing
screens to work without modification. Alternatively, the
familiar drag and drop EDM screen creation tool can be
used to create optimized screens sized specifically for
smart phones and then rendered by WEDM.

INTRODUCTION
WEDM employs native web technologies including Web

Sockets, HTML 5 and SVG to deliver faithful renderings
of control system EDM screens for remote users who can
view them using nothing more than a web browser. The
ease at which screens can be viewed facilitates on call
troubleshooting and off-site monitoring of control systems.
Figure 1 illustrates an EDM controls screen rendered in a
browser via WEDM.

The initial goals for the deployment of WEDM include
(1) enable improved response times of the accelerator
support personnel (reduce the Mean Time To Repair,
MTTR, improve system availability), (2) reduce the
number of staff granted accounts on control system
workstations, and (3) reduce the number of special-purpose
EPICS kiosks in use.

Improved Response Time
With WEDM available, a support personnel alerted to a

problem need no longer have access to a full-blown PC
with network access dependent upon 2-factor hardware
authentication in order to view screens. As long as cellular
service or Wi-Fi is available, identical menus and screens
as available to the control room operator are accessible
through any web browser. Even without the ability to make

changes directly, they can provide diagnosis and guidance
or even walk the operator through making changes to
specific settings.

Fewer Control System Computer Accounts
Prior to WEDM, it was necessary to grant users full

accounts on control system workstations in order to run
EDM and view screens. A significant number of these
users have no need to update settings and can now access
their screens via the web simply using their standard JLab
username and password. For example, the facilities
management department is switching from expensive
proprietary monitoring software to EPICS for monitoring
their gas, water, and electricity meters. These users will
rely on WEDM to view the outputs of their meters.

Reduce Reliance on EPICS Kiosks
A number of EPICS "kiosks" exist at Jefferson Lab.

These include a dedicated xterm that allows security
guards to monitor special alarm screens at times of year
when the control room is not staffed, as well as a number
of xterms on roll-around carts in service buildings and
tunnels. It is envisioned that over time the number of these

Figure 1: An EDM screen rendered in WEDM.

*Authored by Jefferson Science Associates, LLC under US DOE
Contract № DE-AC05-06OR23177

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

TUPHA181
852

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

kiosks will be reduced. The guards will be able to watch
their screens using a standard PC web browser, while techs
will make more frequent use of portable tablets when
working in service areas.

 PROCESS OVERVIEW

Server Request Processing
The WEDM server provides a web page for users to

browse a file system for an edl file and a web service to
generate an HTML view of a selected screen file. The
server code is written in Java and the initial file translation
is done by creating an object representation for each EDM
widget. These intermediate objects are provided the traits
found in the edl file and generate the HTML / SVG sent to
clients.

Client Rendering and CA Updates
The WEDM server’s response to the client web browser

contains all necessary HTML to render a screen and setup
CA monitors. Data attributes embedded in the HTML for
each widget provides the information necessary for CA
monitoring. After the web page completes loading in the
browser JavaScript is used to scan the document for all
widgets and create an object for each widget which
requires PV monitoring. These objects are called
PvObservers and are responsible for handling PV updates
such as from alarm state and value changes. The
PvObserver objects are specialized using prototypal
inheritance and are tailored for each widget type.

For the WEDM screen drawing implementation, we
chose to use HTML and SVG elements thereby preserving
the ability to style via Cascading Style Sheet rules and
interact with and respond to events on elements via the
JavaScript event model. The HTML 5 canvas is also
capable of rendering the EDM screen, but requires a
custom layout and event framework. In order to present a
screen in WEDM, each EDM object is converted to either
a generic HTML div element or an embedded SVG element
and positioned in an absolute layout. An HTML div is used
for widgets with text to leverage the excellent text handling
in HTML. Shapes are modeled using SVG as it provides a
natural fit.

Monitoring of EPICS CA updates is done using the
epics2web gateway. A Web Socket channel is established
between the client web browser and the epics2web service
and a monitor is requested for each PV needed by the
PvObserver objects. A lookup map is created in the
browser, linking a PV with all PvObservers that are
interested. Therefore each time a CA update is delivered
from the epics2web service for a PV, the map can be
consulted to determine which PvObservers to notify of the
update.

WEB GATEWAY
The epics2web gateway is a companion web service

application created to provide a client JavaScript API for
querying EPICS Channel Access over a Web Socket and a

server backend to handle the requests. The server itself is
implemented in Java and uses the EPICS collaboration’s
CAJ Java interface to CA [1]. The web service proxies
requests to a standard EPICS CA Gateway. Internally the
service uses JavaScript Object Notation (JSON) to encode
messages between the client and server making the service
simple to troubleshoot (Figure 2).

EXTENSIBILITY
True to its name WEDM strives to be extensible. The

project page can be found on github.com and the source
code can be easily forked [2]. To add a new widget, one
must create a new Java class which implements the
WEDMWidget interface and handles parsing the edl and
generating HTML. A configuration file named
wedm.properties contains a map from Java class name to
EDM object name and must be updated to reflect the new
widget. On the client, a new instance of the PvObserver
object should be defined and placed in a new JavaScript
file named after the EDM object. The entire application
does not need to be recompiled after a widget is added, but
it does need to be repacked to include the new files.
Packaging is done via an Ant build file. A new JavaScript
file placed in the widget directory will be automatically
concatenated and minified into the distributable package
by the build script.

PERFORMANCE
Parsing an edl file and translating it to HTML every time

a screen is requested can be time consuming for large
screens. A caching layer has been implemented and
screens are stored in memory as they are created and
returned on later requests. On each screen request, the last
modified date of the edl file is consulted to determine if the
screen has been modified and if so, the cached version is
cleared and the screen is regenerated.

General use at JLab has shown that WEDM has good
performance. Page load times are less than a second for
most screens. Most edl screens can be parsed and
converted to HTML screens server side in a few

Figure 2: Test page for epics2web.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

User Interfaces and User eXperience (UX)
TUPHA181

853

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

milliseconds and are transferred to clients encoded with
gzip to minimize network I/O. One of the largest screens
at JLab, the RF Captain screen, contains 4,426 EDM
objects, creates 1,546 PV monitors, and has a dimension of
1200px x 1015px, and results in an uncompressed HTML
file 1.73 MB in size. It takes about 2 seconds to generate
the screen server side on our hardware, but since screen
generation is cached this cost only happens the first time
the screen is requested. Total screen load time for WEDM
on a desktop computer is comparable to native EDM.

IMPLEMENTATION DETAILS

Fonts
Unlike the consistent desktop environment used by

operators in the control room, remote viewing of EDM
screens in a web browser results in a much more diverse
set of client computers including mobile devices, and
therefore a much more diverse set of client fonts. Web
browsers do a good job of substituting missing fonts, but
often the rendered text bounds varies on differing
platforms. To overcome this, WEDM dynamically resizes
all fonts on the client web browser at runtime to fit within
their bounding box.

Mouse Events
The EDM mouse event model differs from the model in

web browsers. In EDM, mouse events are propagated to
all elements in a stack of elements at a given point. In
JavaScript mouse event handling depends on how the
element is positioned and only the top most absolutely
positioned element receives mouse events. To deal with
this in WEDM the top most element event handlers must
search for elements underneath and manually propagate
mouse events to these other elements. EDM screen
designers at JLab like to stack buttons on each other so that
what appears like clicking one button is actually clicking
multiple. Also, stacking Related Displays with the
"invisible" attribute is a common way to allow clicking on
a shape to result in a new screen or screen menu.

Invisible Elements
There are many ways to make elements invisible in

HTML / SVG. In EDM invisible elements must respond
to mouse events. This means we cannot use style rules such
as "display: none" or "visibility: hidden". Instead we must
set the border, background, and foreground color to fully
transparent.

 Stacking Order
In EDM and HTML / SVG the order in which an element

appears in the document from top to bottom determines the
stack order. However, EDM will move an element to the
top of the stack each time it redraws an element, ignoring
stack order. This includes, drawing the outline around a
control widget such as a Related Display or button element
on mouse hover or each time a PV update results in a new
background, border, or other graphical change. This
always draw on top behavior, remains an outstanding

difference between WEDM and EDM. In practice, this
discrepancy has not been a problem on the screens at JLab
for anything other than hover outlines so a simple partial
solution is used to handle this one case: on hover the
“:before” Cascading Style Sheet style selector is used to
insert a pseudo div inside the widget that is then positioned
via z-index above all elements in the same group, even if
they are defined earlier in the document.

CALC Expressions
The ability to execute expressions can be accomplished

in JavaScript using the “eval” statement, but the expression
syntax differs between EDM and JavaScript. To overcome
this, EDM CALC expressions are transformed via
character substitution to JavaScript friendly expressions.

Colors / Color Rules
Colors in EDM are specified as an index into a color

palette stored in a color file (colors.list). Each EDM color
is defined as either a static RGB or as a color rule
(expression). Since the RGB colors on the web have a
depth of 256 and EDM has a depth of 56K (or optionally
256) a conversion generally must take place. Since colors
are dynamically evaluated and assigned, the color file is
translated to a set of JavaScript objects so that the script
running on the client browser can quickly access the colors.

Color rules are handled similar to CALC expressions in
that character substitution is used to prepare the expression
for evaluation using JavaScript “eval”. However, the color
rule operands are implicit and the format is of a conditional
statement. In order for the rules to be evaluated explicit
operands are inserted and the expression is converted to a
JavaScript switch statement.

LOC Variables
During web page initialization when JavaScript objects

are created for each WEDM widget LOC (Local) variables
are handled specially to ensure they are not sent to the
epics2web server requesting EPICS monitoring, but
instead are added to a JavaScript collection of known LOC
variables. Mapping of LOC variables to widgets is handled
just like with EPICS PVs so that when a LOC variable is
updated (perhaps via button press) then all widgets
interested can be notified. LOC variables are stored with
their “LOC\\” prefix to allow mixing them in the same
collections and maps containing EPICS PVs, which always
have their “EPICS\\” prefix stripped off if originally
present.

Macros
HTTP URL parameters are used for EDM macros (a.k.a.

symbols / screen parameters). Macros are passed via URL
in the form “$(<key>)=<value>”, which is the key format
that is used in edl files to store macros (dollar sign prefix
and parenthesis around key) thereby allowing the search
and replace to be executed without further string
manipulation required.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

TUPHA181
854

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

JLAB INTEGRATION

At JLab, we use a desktop directory service named
JMenu to organize and search for screens, applications, and
documentation. Browsing for screens by file name and file
system path or creating a menu link structure on a master
EDM screen are not always the most efficient ways to find
screens. To make usage of the WEDM user-friendly, a
front-end that mimics the desktop screen launcher has been
provided. We created a mobile-friendly web application
named WMenu to extend JLab’s directory service to
WEDM (Figure 3).

JLAB SECURITY
To ensure that WEDM does not become a back-door

allowing remote modifications to the control system we
rely on three layers of defense: (1), All users must
authenticate to the web server with a username and
password; (2) the application itself is designed to be read-
only and does not directly expose any means to update
values; (3) network access controls force WEDM to access
the control system through a read-only EPICS CA gateway.

RELATED WORK

WebOPI
This project does for Control System Studio (CSS)

screens what WEDM does for EDM: OPI files created
from CSS BOY can be used as is on the web. A key
difference is that WebOPI forwards all click events to the
server for processing, generating a lot of network traffic
and putting most processing logic on the server. Widget

updates are communicated to clients as all new layout
instructions. The server also uses long polling instead of
Web Sockets for notifications [3].

WebPDA
Created in response to the performance limitations of

WebOPI, this toolkit leverages Web Sockets to expose
EPICS PVs to the web. A small set of custom widgets are
included and a JavaScript API is provided with
authentication at the application layer. A limitation of
WebPDA is that one must create new screens from scratch
using JavaScript and HTML.

Diirt / WebPODS / pyPODS
Originally starting out as a Java CA wrapper library

named pvmanager and integrated into CSS, this project is
now a more generalized library and includes a protocol for
accessing CA over Web Sockets. The WebPODS web
service and its Python cousin pyPODS are similar to
epics2web, but epics2web only exposes EPICS CA
whereas WebPODS provides a much more generic
protocol [4].

Others
There are many other EPICS on the web projects.

Projects which rely on a Java Applet include CAML /
WebCA [5] and JDM [6]. Projects which use Web Sockets
include web-epics [7] and NodeCA [8]. Projects which are
capable of parsing either an edl or adl file include
WebMEDM [9], EMF [10], and JDM.

FUTURE WORK
There are many interesting opportunities for expanding

WEDM. Several widgets are yet to be supported such as
the X-Y graph widget and the analog needle meter widget.
Further, widget versioning is not implemented and it would
allow better interoperability with legacy screens if added.
Finally, it would be interesting to allow modifications of
the control system via WEDM, but would require careful
consideration and use of security mechanisms.

CONCLUSION
The WEDM application provides an easy to deploy out-

of-the-box solution for viewing existing EDM screens
remotely. It also allows technicians to use the already
familiar drag and drop EDM screen creation tool to create
new mobile friendly screens.

REFERENCES
[1] M. Šekoranja, R. Šabjan, “Channel Access Java

(CAJ)”, presented at EPICS Collaboration Meeting,
Menlo Park, CA, USA, April 2005.

[2] WEDM, https://github.com/JeffersonLab/wedm
[3] X. Chen and K. Kasemir, “Bringing Control System

User Interfaces to the web”, in Proc. ICALEPCS’13,
San Francisco, CA, USA, October 2013, paper
THCOAAB03.

 Figure 3: JLab’s web-based screen menu.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

User Interfaces and User eXperience (UX)
TUPHA181

855

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[4] C. Carcassi, K. Shroff, “WebPODS: Accessing
Control Data Through Web Standards (WebSockets,
JSON, HTML, CSS)”, presented at ICALEPCS’15,
Melbourne, Australia, October 2015, paper
THHC3O02, unpublished.

[5] T. Pelaia, M. Boyes, “Introducing CAML II”, in
Proc. ICALEPCS’09, Kobe, Japan, October 2009,
paper FRA001.

[6] JDM,
https://www.jlab.org/cdev/java/jdm/UserDoc/

[7] web-epics,
https://github.com/AustralianSynchrotron/web
-epics

[8] A. Uchiyama, K. Furukawa, Y. Higurashi, “EPICS
Channel Access Using WebSocket”, in Proc.
PCaPAC’12, Kolkata, India, December 2012, paper
WECC02.

[9] A. Bertrand, R. Krempaska, “EPICS on the WEB”, in
Proc. ICALEPCS’05, Geneva, Switzerland, October
2005, paper PO2.087-5.

[10] R. Farnsworth, C. Myers, A. Starritt, “The Flange for
Controls System to Internet Applications”, in Proc.
ICALEPCS’09, Kobe, Japan, October 2009, paper
THP106, unpublished.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA181

TUPHA181
856

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

