
CUMBIA: A NEW LIBRARY FOR MULTI-THREADED APPLICATION

DESIGN AND IMPLEMENTATION

Giacomo Strangolino, Elettra, Trieste, Italy

Abstract
Cumbia is a new library that offers a carefree approach

to multi-threaded application design and implementation.
Written from scratch, it can be seen as the evolution of the
QTango library [1], because it offers a more flexible and
object oriented multi-threaded programming style. Less
concern about locking techniques and synchronization,
and well defined design patterns stand for more focus on
the work to be performed inside cumbia activities and
reliable and reusable software as a result. The user writes
activities and decides when their instances are started and
to which thread they belong. A token is used to register an
activity, and activities with the same token are run in the
same thread. Computed results can be forwarded to the
main execution thread, where a GUI can be updated. In
conjunction with the cumbia-tango module, this
framework serves the developer willing to connect an
application to the TANGO control system. The
integration is possible both on the client and the server
side. An example of a TANGO device using cumbia to do
work in background has already been developed, as well
as simple QT [2] graphical clients relying on the
framework.

COMPONENTS

Cumbia Modules

Cumbia is a set of distinct modules; from lower to
higher level:

• cumbia: defines the Activities, the multi thread
implementation and the format of the data exchanged
between them;

• cumbia-tango: integrates cumbia with the TANGO
control system framework, providing specialised
Activities to read, write attributes and impart
commands;

• cumbia-epics: integrates cumbia with the EPICS
control system framework. Currently, only variable
monitoring is implemented;

• cumbia-qtcontrols: offers a set of QT control widgets
to build graphical user interfaces. Inspired by the
QTango’s qtcontrols components, they have been
enhanced and sometimes rewritten to look more
stylish and friendly. The module is aware of the
cumbia data structures though not linked to any
specific engine such as cumbia-tango or cumbia-
epics.

• qumbia-tango-controls: written in QT, is the layer
that sticks cumbia-tango together with cumbia-
qtcontrols;

• qumbia-epics-controls: written in QT, the component
pairs cumbia-epics to cumbia-qtcontrols.

• qumbia-apps: a set of applications written in QT that
provide elementary tools to read and write values to
the TANGO and EPICS control systems.

Combining together the modules allows to instantiate a
control system engine and build command line or QT
graphical user interfaces effortlessly. Engines can coexist
within the same application to seamlessly control devices
belonging to separate control systems. Figure 1 shows
how modules are interrelated.

Figure 1: Relationships amongst cumbia modules.

CUMBIA

Cumbia is the name of the lower layer of the collection,
as well as the name of a single object every application
must hold in order to use its services.
In asynchronous environments, threads have always
posed some kind of challenge for the programmer. Shared
data, message exchange, proper termination are some
aspects that cannot be overlooked. The Android
AsyncTask [3] offers a simple approach to writing code
that is executed in a separate thread. The API provides a
method that is called in the secondary thread context and
a couple of functions to post results on the main one.

Activities

Cumbia CuActivity’s purpose is to replicate the carefree
approach supplied by the AsyncTask. In this respect, a
CuActivity is an interface to allow subclasses to do work
within three specific methods: init, execute and onExit.
Therein, the code is run in a separate thread. The
publishProgress and publishResult methods hand data to
the main thread. To accomplish all this, an event loop
must be running. By an initial parametrization, either a
custom one (such as QT’s, used in qumbia-qtcontrols) or
the builtin cumbia CuEventLoop can be installed. New
activities must be registered in the CuActivityManager
service, and unregistered when they are no longer needed.
In this way, a token can be used to group several activities
by a smaller number of threads. In other words, activities
with the same token run in the same thread. Thread

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA174

TUPHA174
830

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

implementation in Cumbia requires a compiler supporting
the C++11 standard.

Services

By means of the reference to the Cumbia instance, that
must be maintained throughout the entire life of an
application, you can access services. They are registered
in the CuServiceProvider and accessed by name. The
activity manager, the thread and the log services are some
examples, but others can be written and installed, as long
as they adhere to the CuServiceI interface (e.g cumbia-
tango’s CuActionFactoryService and
CuDeviceFactoryService). Cumbia can be subclassed in
order to provide additional features specific to the engine
employed. CumbiaPool allows to register and use
multiple engines in the same application. Services have
been conceived with the service provider design pattern in
mind.

Data Interchange

Data transfer is realised with the aid of the CuData and
CuVariant classes. The former is a bundle pairing keys to
values. The latter memorises data and implements several
methods to store, extract and convert it to different types
and formats. The cumbia-qtcontrols module handles these
structures to provide a primary data display facility,
unaware of the specific engine underneath (TANGO,
EPICS, ...)

CUMBIA-TANGO

cumbia-tango integrates cumbia with the TANGO
control system framework, providing specialised activities
to read, write attributes and impart commands.

Implementation

The CumbiaTango class is an extension of the Cumbia
base one. Its main task is managing the so called actions.
An action represents a task associated to either a TANGO
device attribute or a command (called source). Read,
write, configure are the main sort of jobs an action can
accomplish. More types of actions are foreseen, such as
multiple readings or writings in sequence.
CuTangoActionI defines the interface of an action.
Operations include adding or removing data listeners,
starting and stopping an action, sending and getting data
to and from the underlying thread (for example retrieve or
change the polling period of a source). CuTReader
implements the interface and holds a reference to either
an activity intended to receive events from TANGO or
another one designed to poll a source. Figure 2 describes
these relationships.

Activities is where the TANGO connection is setup,
database is accessed for configuration, events are
subscribed, a poller is started or a write operation is
performed. This is done inside the thread safe init,
execute and onExit methods, invoked from another thread.
Progress and results are forwarded by the publishProgress
and publishResult methods in the activity and received in

Figure 2: Diagram for the relationships between objects
making up a TANGO reader.

the onProgress and onResult implemented by the action.
Therein, CuDataListener’s onUpdate method is invoked
with the new data. Reception safely occurs in the main
thread. As previously stated, activities identified by the
same token (a CuData object) belong to the same thread.
cumbia-tango groups threads by TANGO device name.

CUMBIA-QTCONTROLS

This module combines cumbia and the QT cross
platform software framework, offering graphical control
system components. Labels, gauges and advanced graphs
are supplied, as well as buttons and boxes to set values.
As mentioned earlier, elementary data representation is
provided, due to the component unawareness of the
cumbia engine lying beneath. In order to display real data
on the controls, you have to combine different building
blocks at the moment of setting up each reader or writer
in your application, as described later. When data is
ready, it is delivered to the main thread through the
onUpdate method that the control component (such as a
label) must implement, for the reason that it inherits from
the CuDataListener interface (see Figure 3).

Figure 3: Diagram for the relationships between the
classes involved in a graphical control widget design.

For an event loop must be executing, messages are
posted to the main thread relying on an implementation of
the CuThreadsEventBridge_I interface. In QT, we use
QCoreApplication’s event loop in conjunction with

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA174

Software Technology Evolution
TUPHA174

831

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

cumbia-qtcontrols’ QThreadsEventBridge, which exploits
QCoreApplication’s postEvent, a familiar scheme for QT
developers. From within onUpdate, data is extracted and
presented to the user by way of the control widget.

Conceived to associate with widgets, even though not
related to them, are a couple of abstract classes that
define an interface to readers and writers, namely
CuControlsReaderA and CuControlsWriterA.
Implementations of methods to set and remove sources
and targets of execution are required, as well as means to
send and receive messages to and from actions. They also
keep references to the currently active Cumbia and data
listener instances. Object composition to accomplish the
set up of a TANGO (EPICS) reader (writer) will be
discussed later.

The strategy design pattern [4] offers a method to
install engine specific interpreters on the available
widgets. For instance, a TANGO aware plot can provide a
strategy to correctly deal with with warning and alarm
ranges and the attribute history.

QUMBIA-TANGO-CONTROLS

qumbia-tango-controls, a component written in QT,
combines cumbia-tango with cumbia-qtcontrols.

CuTControlsReader and CuTControlsWriter are the
implementors of the previously discussed
CuControlsReaderA and CuControlsWriterA abstract
classes. Their sources and targets are TANGO attribute
and command names, written with the same syntax as that
adopted by QTango. They operate on a CumbiaTango
instance, which is in charge of creating and registering
actions exploiting the CuActionFactoryService, finding
actions already in use and managing installation and
removal of CuDataListener elements. These features
specialise CumbiaTango with respect to the Cumbia base
class. Refer to Figure 1 for a graphical representation of
the relationships amongst cumbia modules and the
aggregating role of qumbia-tango-controls.

Object Composition to Create a TANGO Reader

Figure 4 shows a class diagram illustrating the
relationships between the objects involved in the set up of
a TANGO reader intended to display values on a label.

Figure 4: Relationships between the objects involved in
the setup of a TANGO reader for a QuLabel.

A first observation concerns the mediation of factories
to provide instances of specific objects. From the
compositional and chronological perspective, qumbia-
tango-controls’ CuTReaderFactory creates a
CuTControlsReader within the setSource method of a
QuLabel that has been set up with CumbiaTango and
CuTReaderFactory as arguments. CumbiaTango and the
QuLabel (as a CuDataListener) parametrize
CuTControlsReader too at creation time through the
CuTReaderFactory. QuLabel’s setSource finally invokes
the method with the same name on the
CuTControlsReader.

The latter requests CumbiaTango to find an existing
action or to create a new one for the desired source. Since
qumbia-tango-controls and cumbia-tango are decoupled,
TANGO action creation is again delegated to a factory,
one of the implementations of CuTangoActionFactoryI, in
this case a TANGO reader factory. Once a reference to a
new or preexisting action has been obtained, the listener
(QuLabel) is added. The last consideration implies that
different listeners attached to the same source share the
same action. Changing the settings for that action (read
mode, polling period and so on) affects therefore all
listeners.

Figure 5 graphically illustrates what has just been
described. The sequence diagram of the initialization of a
reader by means of the setSource method is represented.
Note that, after the asynchronous message registerActivity
at the bottom of the chart, QuLabel will receive updates
from TANGO as an implementor of CuDataListener.
Inside the very same method, the token chosen to register
the activity is used to determine whether a new thread has
to be created or an existing one can be adopted.
CumbiaTango’s choice is to group threads by device
name.

Object Disposal

Object creation alike, the disposal of a cumbia reader
requires a certain degree of complexity in order to grant
components independence. Taking again QuLabel as
example, upon deletion the reader factory is first
destroyed, then CuTControlsReader. It calls unsetSource
to unlink the the QuLabel as a data listener of its
associated action (i.e. CuTReader). If there are no more
listeners, CuTReader stops itself issuing an
unregisterActivity request to CumbiaTango.

The analysis hitherto developed shows how cumbia
modules are independent from each other. Object
composition is required to make elements aware of a
specific control system.

QUMBIA-APPS

qumbia-apps module provides a set of base applications
to perform elementary actions on sources, such as
readings and writings. The generic_client tool is a
graphical panel able to read and write from both TANGO
and EPICS, using labels to display the current value and
plots to show the trend over time or the present values, if
the format is a vector. Figure 6 is a screenshot of the
generic_client reading a TANGO scalar attribute, a
TANGO spectrum and an EPICS analog input.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA174

TUPHA174
832

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 5: Sequence diagram of the initialization of a reader. After the asynchronous message registerActivity at the
bottom, QuLabel receives updates from TANGO as a CuDataListener implementor.

Figure 6: generic_client reading a TANGO scalar and spectrum attribute and an EPICS analog input.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA174

Software Technology Evolution
TUPHA174

833

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONCLUSION

The QTango library, currently in use at the Elettra
Synchrotron Radiation Facility, Trieste, Italy, has proved
to be stable, reliable and efficient throughout the years. It
makes TANGO development easy and fast, handing the
programmer a set of widgets already covering the great
majority of needs to build control room applications.
Extending existing QTango components is very easy and
creating new readers and writers is just a matter of
subclassing and reimplementing one or two methods. All
the control room applications for the FERMI@Elettra, the
seeded free electron laser (FEL) facility, rely on the
QTango framework. Nevertheless, many of the features
offered are not required daily whereas some of them are
not easy to implement (e.g. multiple serialised readings).
QTango is tightly bound to TANGO, the architecture is
somehow complicated and the code is not modular nor
reusable enough. On the other hand, cumbia is made up of
standardized units for easy construction or arrangement.
Its lowest level can be seen as a bare C++ library
suggesting another approach to multi threading, the so
called activities (see the Cumbia section). They allow to
simply group workers by means of a token and define a
simple dictionary based structure for thread safe data
interchange. The other components use QT, TANGO,
EPICS in conjunction with the base library to fulfil more
specific tasks. In other words, you can use cumbia to
write a client-server chat application, cumbia and cumbia-
tango to write a TANGO device server or a C++
command line program, cumbia, cumbia-tango, cumbia-
qtcontrols and qumbia-tango-controls for a graphical user
interface. Cumbia has been conceived to be lightweight,

fast, scalable and easily extensible in the future. Adding
characteristics is a matter of writing activities, registering
and deregistering them in cumbia. The extensive adoption
of the bridge design pattern ([4] and [5]) in the interior of
most classes ensures binary compatibility at every stage
of the future development. The C++ code employs the
listener/callback pattern for asynchronous notifications,
while the QT modules avail themselves of the signal/slot
model. The abstract factory and factory method models
[4] do away with the coupling between components.
Finally, the strategy pattern can be applied to tailor
generic graphical components to individual control
system engine characteristics. Just as QTango, cumbia is
equipped with QT designer plugins to quickly shape a
graphical user interface for control systems.

ACKNOWLEDGEMENT

I would like to thank Stefano Cleva for his support for
the initial set up of a minimal EPICS environment.

REFERENCES

[1] G. Strangolino et al., “Control Room Graphical Applications
for the Elettra New Injector”, Proceedings of PCaPAC08,
Ljubljana, Slovenia, 2008.

[2] QT, Cross-platform software development for embedded &
desktop, https://www.qt.io/

[3] Android AsyncTask, from the Android developer guide,
https://developer.android.com/

[4] Erich Gamma et al., Design Patterns, Elements of Reusable
Object-Oriented Software, October 1994.

[5] D-Pointer or opaque pointer design pattern, wiki.qt.io/D-
Pointer

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA174

TUPHA174
834

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

