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Abstract
In  developing  the  control  system  for  the  FAIR

accelerator  complex  we  encountered  strict  latency  and

throughput  constraints  on  the  timely  supply  of  data  to

devices  controlling  ramped  magnets.  In  addition,  the

timing  hardware  that  interfaces  to  the  White  Rabbit

timing network may be shared by multiple processes on a

single  front-end  computer.  This  paper  describes  the

interprocess communication and resource-sharing system,

and the consequences of using the D-Bus message bus.

Then our experience of improving latency and throughput

performance  to  meet  the  realtime  requirements  of  the

control  system is  discussed.  Work is  also presented  on

prioritisation techniques to allow time-critical services to

share the bus with other components.

INTRODUCTION

The  White  Rabbit  based  FAIR  Timing  System

developed  at  GSI  [1]  provides  FPGA-based  Timing

Receiver hardware for frontend computers. The SAFTlib

project (Simplified API for Timing) was designed to share

the  resources  of  the  Timing  Receivers  and  provide  a

stable  interface  that  abstracts  software  clients  from the

complexity of the timing system. The design goals are to:

• Share the Timing Receiver hardware resources

• Unify different underlying hardware.

• Prevent applications creating conflicting events

• Isolate applications from failures in other clients

• Monitor hardware status

 Interprocess  communication  between clients  and  the

SAFTlib process (saftd) is via the d-bus shared message

bus. 

This  paper  describes  the  hardware  and  software

environment in which it is used and experiences in using

SAFTlib in a production environment. The primary focus

is on achieving the throughput and latency necessary to

operate  the  FAIR  accelerators  whilst  maintaining  the

flexibility  and  compatibility  of  the  original  SAFTlib

design. 

FAIR ACCELERATOR ENVIRONMENT

The  FAIR  project  will  include  a  complex  of

accelerators  and  a  new  control  system  is  under

development [2]. The CRYRING low-energy storage ring

is  being  used  to  test  and  evaluate  the  control  system

before  retrofitting  the  existing  GSI  infrastructure  and

equipping the new FAIR accelerators. 

Timing Network

The  FAIR  timing  system  uses  White  Rabbit  to

distribute high precision timing events over a dedicated

Ethernet-based  network.  The  complexities  of  clock

synchronization,  signal  latencies  and  network  topology

are abstracted from the users of the timing system. The

high-level  applications  interact  with  the  Data  Master,

which maintains a schedule of events and distributes them

to Timing Receivers. Low-level applications interact with

the  Timing  Receivers  located  close  to  the  equipment.

Equipment  that  controls  a  logically  related  set  of

accelerator components is collected into a Timing Group. 

Frontend Controllers

The standard environment for the FAIR control system

is the Scalable Control Unit [3]. It provides an Intel 64-bit

CPU, Linux Operating System with realtime patches, an

FPGA Timing Receiver  connected  via  PCI-express  and

Wishbone. The timing software is also required to run on

other  systems  with  greater  processing  power  for  Beam

Diagnostics,  systems  interfacing  to  hardware  using  a

VME  Bus,  and  systems  with  USB-connected  Timing

Receivers.  The  SAFTlib  software  aims  to  provide  a

standard interface across multiple platforms.

Timing Receivers

The Data Master sends event messages over the White

Rabbit  network  shortly  in  advance  of  their  planned

execution time. The Timing Receiver hardware matches

events against a set of conditions. The Event-Condition-

Action (ECA) unit  is  responsible for  generating actions

from incoming Timing Events. For equipment with hard

real-time requirements, hardware actions are used. These

send signals  over a variety of bus interfaces  directly to

equipment.  An  example  is  the  trigger  synchronization

event that is used to start waveform generators. For events

that  can tolerate higher  latency software actions can be

used.  For  example,  sequence  start  events  signal  that  a

device should be prepared for a new cycle and load data

for a later hardware trigger,  a gap event can signal that

software  has  a  period  in  which  it  may freely  read  the

status of equipment.

Function Generators

Central  to  the  performance  investigation  is  the

anticipated  load  from  Function  Generator  units.  These

generate  arbitrary waveforms  from a  set  of  polynomial

coefficients and after D/A conversion control a variety of

magnet  power  supplies.  The  polynomials  describe  the

waveform  in  segments  starting  as  1ms  in  length.  This

D-Bus 
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representation  was  chosen  over  a  value  sequence  or

coordinate  representation  to  reduce  the  bandwidth

requirements.  The  requirement  to  support  existing

equipment  operating  via  MIL-bus  forces  the  use  of  a

lower bandwidth representation.

The polynomial sequence is checked to ensure it will

result  in  a  valid  waveform  before  being  sent  to  the

function generator. The function generator hardware has a

limited amount of memory and requires streaming from

the saftd driver  during longer output ramps. The driver

must load a sufficient quantity of data into the function

generator and arm it before the trigger event is received.

The  goals  during  initial  testing  were  to  supply  800

coefficient sets, 12 Function Generator channels in 25 ms.

This  beam  preparation  time  is  acceptable  for  the

CRYRING tests. Further  development will be  required

to make more  use of  the streaming mode of  operation.

Pre-loading the entire segment is however a good test of

the data delivery system.

SOFTWARE ENVIRONMENT

The FAIR accelerators are controlled by custom Java-

based  applications  using  the  LSA  (LHC  Software

Architecture)  framework  [4]  to  manage  the  settings  for

individual devices to fulfil the needs of experiments. This

upper  layer  generates  settings  for  each  device  and  a

Timing Schedule that specifies to the Data Master when

settings are to be applied. Applications may also receive

feedback by polling or subscribing to devices.

Software on the front-end computers is developed using

the  Front  End  Support  Architecture  (FESA)  –  a

framework developed in collaboration with CERN [5] for

the  development  of  C++  software.  FESA  software  is

developed to a set of guidelines that provide a standard

interface  that  applications  use  to  control  and  monitor

various types  of hardware.  An executable FESA binary

contains instances of a FESA class representing specific

devices  and exposing settings and acquisition values  to

applications. The details of which computer the software

is  running  on  and  how many devices  that  computer  is

responsible for is largely hidden.

A typical FESA application might have:

• Software Event on Beam Preparation Event to load

settings

• An  equipment-specific  Hardware  Event  to  trigger

pre-loaded settings

• A Software  Event  to  read  acquisition  values  from

hardware

• A Timer for status updates

A  FESA  software  program  may  be  responsible  for

equipment in different Timing Groups and responding to

different  Timing  Events.  Additionally  there  may  be

multiple FESA binaries  running on a single SCU. This

gives rise to the requirement that multiple processes can

control the Timing Receiver and listen to Events without

disturbing each other.

SAFTLIB DESIGN

The interface to the timing receiver  is  managed by a

single process – saftd. This process contains the interrupt

handler  and  performs  all  communication  to  the  timing

hardware over the PCI-express bus.

Clients  connect  to  saftd  via  the  d-bus  Interprocess

Communication  (IPC)  standard.  All  clients  request

conditions:  Hardware  Conditions  for  timing  event  to

hardware action and Software Conditions for timing event

to software  action.  Saftd  checks  requests  do  not  create

conflicts  between  processes  and  compiles  the  set  of

conditions to a format that may be sent to the ECA unit.

The timing receiver uses interrupts to signal incoming

data. The satfd interrupt handler is responsible for sorting

interrupts  from different  channels,   requesting data  and

forwarding  it  to  the  clients.  By  having  only  a  single

process  receive  the  interrupts  and  use  the  Etherbone

interface  contention  is  avoided.  (It  is  still  possible  for

another process, such as a legacy application, to use the

Etherbone interface and cause a conflict.)

Driver and Proxy Client Interface

Saftd  provides  an  object-based  interface  for  clients.

Objects exist in the saftd process and can be accessed via

d-bus IPC. Clients create Proxy objects that manage the

details of  communication with saftd.  The interfaces  are

specified in XML format similar to the D-Bus reference

implementation but specialised to the expected use cases.

A code generation tool generates C++ code for both the

driver service and proxy side hiding the complexities of

interacting with the d-bus argument marshalling. 

Drivers are part of the saftd process. Driver developers

must complete the implementation behaviour defined by

the interface definition and adapt to specific hardware.

Client  applications link to a library containing Proxy

classes  that  handle  all  interactions on the message bus.

Clients can call methods, register for callbacks and read

properties.  Properties  are  cached  locally  by  the  proxy;

changes to a property are sent on the bus to all registered

proxies.

SAFTLIB PERFORMANCE

For hard real-time requirements that need latencies of

microseconds  or  lower  hardware  events  must  be  used.

These  can  reliably  operate  at  very  low  latency,  but

dedicated hardware has a longer development time and is

more  costly  and  less  flexible.  Reducing  the  latency  of

software events makes them useful to a wider set of tasks

and increases the flexibility of the entire control system.

The delay between a Timing Event triggering and the

hardware  outputting to  the SCU bus is  of  the order  of

100 ps.  A software  interrupt  in  the  Linux  kernel  has  a

delay of the order of 100 μs. Figure 1 shows a distribution
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of  latency  measurements  from  hardware  to  the  FPGA

softcore,  Linux  kernel,  User-mode  driver  and  FESA

processes.

Figure 1: Latency measured by oscilloscope. 

Table 1 shows the approximate 95th percentile latencies

measured  for  the  stages  of  a  timing  event  notification

message.  Significant  outliers  were  excluded  and  are

discussed later in the prioritisation topic.

Table 1: Latencies (95  percentile): d-busth

Event Time

Timing Event to Interrupt Handler 80 μs

Driver reads hardware 80 μs

D-bus (de)marshalling 200 μs

D-bus Transfer 600 μs

Proxy to FESA Eventsource 100 μs

FESA Action Scheduler 300 μs

Timing Event to FESA Action 1.5 ms

A  particular  performance  issue  is  the  handling  of

simultaneous  end-of-cycle  interrupts.  The  Function

Generator unit can produce 12 simultaneous interrupts –

delays  whilst  processing  these  cause  the  software  and

hardware state to disagree, which has caused faults where

hardware  has  been  incorrectly  shown as  busy and new

data sets rejected.

The greatest gains can be achieved by optimising the d-

bus IPC mechanism. Sending a d-bus message requires

several  context  switches  between  user-space  processes

and conversion of data objects to and from the d-bus wire

format.  We  investigated  several  areas  looking  for

improvements in transfer  speed and average and worst-

case latency.

IMPROVMENTS INVESTIGATED

For most operations the size setting or acquisition data

is  so  small  that  latency  dominates.  When  sending  the

parameter  sets  for  Function  Generators,  however,  data

throughput was found to be too slow.

D-bus File Descriptor

The  d-bus  standard  allows  processes  to  share  file

descriptors across the bus. As file descriptors are an index

that  only works in the context  of  a single  process,  file

descriptors  must  be handled  differently than  other  data

types  and the SAFTlib d-bus implementation had to be

changed.

For the first investigation, file descriptors were used to

open a pipe between saftd and the client proxy which then

carried the waveform data.

Figure 2: Data Transfer speed: d-bus vs. pipe.

As seen in Fig.  2,  this significantly reduced the time

taken for the data transfer, sufficiently to allow the control

system  to  operate  CRYRING  successfully  during  early

tests. However the setup time remains relatively high.

Grouping D-bus Operations

To take advantage of the higher throughput of the file

descriptor  and  pipe  mechanism,  SAFTlib was  extended

with a Master Function Generator interface that is capable

of  sending  commands  to  and  aggregating  replies  from

multiple  function  generator  units  in  a  single  d-bus

operation.

Reducing D-bus Load

The SAFTlib design includes many actions and metrics

that  may  be  used  to  monitor  the  status  of  the  timing

receiver. The Function Generator signals state transitions

and  data  requests.  Under  high  load  it  was  found  that

registering to these signal  could use enough extra CPU

time  to  impair  the  performance  of  the  critical  events.

Figure 3 shows the effect on performance of running an

extra process that uses d-bus. 

Figure 3: Data Transfer speed with concurrent d-bus users.

In the case of a 12-channel system, the Master Function

Generator interface reduces the number of d-bus calls per

cycle  from  24  to  1  and  the  time  taken  from  approx.

120 ms to under 25 ms.
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Multi-Session File Descriptor

To avoid the overhead  of transferring file descriptors

via a d-bus transaction for each data exchange the d-bus

mechanism can be used to create a persistent pipe.  The

driver  and client  must agree  on a protocol for  the data

stream  and  more  care  must  be  taken.  This  makes  the

approach  most  suitable  for  the  triggering  of  software

events in the FESA framework. Using d-bus only for the

initial negotiation phase produced the results in Table 2.

Table 2: Latencies (95  percentile): pipeth

Event Time

Timing Event to Interrupt Handler 80 μs

Driver reads hardware 80 μs

Pipe Transfer 50 μs

FESA Action Scheduler 350 μs

Timing Event to FESA Action 600 μs

Bypassing  the  d-bus  mechanism  gives  significant

performance  gains  but  care  must  be  taken  to  avoid

conflicts. Interrupt-driven driver to client events are safe;

client  requests  to the driver  are  no longer  forced  to  be

sequential  by  d-bus  so  access  to  hardware  must  be

checked. Further work is planned in this area.

WORK IN PROGRESS

System Priorities

In a real-time system worst-case latency is important as

late delivery of certain events is a failure. A single FESA

binary may have tens of threads at many priority levels.

Optimizing  the  relative  priorities  of  the  front-end

processes  will  help  ensure  correct  operation  at  higher

CPU loads. Continuous high load needs to be avoided by

limiting the tasks assigned to an SCU. Prioritisation can

only  mitigate  the  impact  on  critical  services  in  the

absence of a true real-time operating system.

Saftd Internal Priorities

The initial design of Saftlib has a single process  and

thread  responsible for  interrupt  handling,  servicing  IPC

requests and interacting with the hardware devices. This

guarantees  there is  no contention on the Etherbone bus

but  does  not  deliver  optimal  performance.  Introducing

multithreading into a system introduces the complications

of locks and shared resources. The first steps to a more

parallel concept are the identification of critical pathways,

identification of isolated components and identification of

low-priority activities.

• High  priority  Software  Action  where  delays  cause

failure. 

• Generic  Software  Action  where  best-effort  is

acceptable.

• Idle  Software  Actions  which  may  be  re-scheduled

until resources are available. 

  D-bus Prioritisation

A  typical  system  may  have  time-critical  actions  to

control hardware and less-critical actions for monitoring

and  diagnostics.  D-bus  itself  does  not  support

prioritisation of messages. However, there is a system bus

and a user bus. This allows for two categories of message

that can be kept separate.

Kernel D-bus

Since  the  d-bus  daemon  is  a  user  process,  a  d-bus

transaction  will  switch  between  kernel  and  user  mode

several  times.  Kernel  d-bus  incorporates  the  d-bus

services  into  the  Linux  kernel  and  promises  significant

latency  reductions.  The  requirement  to  backport  kernel

changes  to  the  deployed  Linux  version  has  prevented

further investigation at the moment.

Data Acquisition Support

Further  improvements  to  the  function  generator

hardware will include a Data Acquisition mode to provide

feedback  for  the  control  system.  It  may be  possible  to

integrate bi-directional streaming.

CONCLUSION

In this paper we have presented the current state of the

SAFTlib  Timing  Interface,  examined  some  of  its

performance  characteristics  and  a  number  of  ways  of

improving  the  throughput  and  latency  characteristics.

Improving the response speed of SAFTlib is required for

the later stages of the FAIR project.

There  are  several  ongoing  investigations  that  aim  to

improve  performance,  both  globally  and  targeted  at

specific use-cases, whilst retaining a flexible API that can

handle  multiple  client  processes  and  heterogeneous

hardware.
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