
NEW DEVELOPMENTS FOR THE HDB++ TANGO ARCHIVING SYSTEM
L. Pivetta∗1, G. Scalamera, G. Strangolino, L. Zambon, Elettra Sincrotrone Trieste, Trieste, Italy

R. Bourtembourg, S. James, J.L. Pons, P. Verdier, ESRF, Grenoble, France
S. Rubio-Manrique, ALBA-CELLS Synchrotron, Barcelona, Spain

1also at SKA Organisation, Macclesfield, UK

Abstract
TANGO HDB++ is a high performance event-driven

archiving system which stores data with micro-second
resolution timestamps, using archivers written in C++.
HDB++ currently supports MySQL and Apache Cassandra
back-ends but could be easily extended to support additional
back-ends. Since the initial release many improvements and
new features have been added to the HDB++. In addition to
bug-fixes and optimizations, the support for context-based
archiving allows to define an archiving strategy for each
attribute, specifying when it has to be archived or not. Tem-
porary archiving is supported by means of a time-to-live
parameter, available on a per-attribute basis. The Cassandra
back-end is using Cassandra TTL native feature underneath
to implement the time-to-live. With dynamic loading of spe-
cific libraries switching back-ends can be done on-the-fly
and is as simple as changing a property. Partition and main-
tenance scripts are now available for HDB++ and MySQL.
The HDB++ tools, such as extraction libraries and GUIs,
followed HDB++ evolution to help the user to take full ad-
vantage of the new features.

INTRODUCTION
The HDB++ TANGO archiving system [1, 2] is a tool

that allows to store the attribute values in a TANGO based
control system into an historical database, exploiting the pub-
lish/subscribe TANGO capabilities. The publish/subscribe
paradigm is available in TANGO via the event subsystem.
More in detail, the archive event is provided for archiving pur-
poses and can be triggered on threshold comparison and/or
periodic basis. The HDB++ architecture is fully event based;
therefore, a part of HDB++ setup consists of conveniently
configure TANGO devices to send events as required. The
TANGO archiving system consists of two main components,
namely the EventSubscriber TANGO device, or archiving
engine, and the ConfigurationManager TANGO device, that
simplifies archiving configuration and management. The
HDB++ also provides the libraries to interface the supported
back-ends, libraries for data extraction and some graphical
user interfaces for configuration and data visualization. The
typical HDB++ setup is shown in Fig. 1.

NEW FUNCTIONALITIES
In addition to bug-fixes and optimisations, a number of

new functionalities and improvements have been developed
for the HDB++ archiving system.

∗ lorenzo.pivetta@elettra.eu

Figure 1: Typical HDB++ setup.

Context-based Archiving
The support for context-based archiving allows to define

an archiving strategy for each attribute. A strategy is the
list of contexts for which the attribute has to be archived.
When an EventSubscriber is set to a context, only attributes
that have this specific context in their strategy are archived,
and all the remaining attributes are automatically stopped.
The strategy configuration for each attribute is saved in
an EventSubscriber property named AttributeList, using a
“name=value” approach, where the name is “strategy” and
the value is a list of context labels separated by “|”. Some
attribute configuration lines, taken from the AttributeList
property, are shown in Table 1; it is worth noting the use
of the Fully Qualified Device Name (FQDN) to identify
each attribute, allowing an EventSubscriber to archive data
coming from different TANGO facilities.

Table 1: AttributeList Property Configuration Excerpt

tango://srv-tango-srf.fcs.elettra.trieste.it:20000/eos/climate/ ←↩
18b20.01/state; strategy=RUN|SHUTDOWN
tango://srv-tango-srf.fcs.elettra.trieste.it:20000/pil/laser/ ←↩

evops.01/state; strategy=RUN

The list of the context labels can be defined as TANGO
database free property, and/or as class property and/or as
device property named ContextsList. Whenever defined, de-
vice property setting overrides class property which in turn
overrides free property. The ContextsList property contains
an array of strings, specifying available context names, with

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

Software Technology Evolution
TUPHA166

801

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



optional descriptions; the default value, that can be changed
by the user, is shown in Table 2. An additional class/device

Table 2: Default Value for ContextsList Property

ALWAYS:Always stored
RUN:Stored during run
SHUTDOWN:Stored during shutdown
SERVICE:Stored during maintenance activities

property, named DefaultStrategy, allows to specify the de-
fault archiving strategy for all attributes. The default applies
whenever not overridden by the attribute configuration. The
default value for DefaultStrategy is ALWAYS.

The EventSubscriber device exposes a read-write memo-
rised attribute, named context, to keep trace of the current
running context. The context attribute is also exposed in the
ConfigurationManager device to allow changing the context
of all the managed EventSubscriber devices.

The effectivness of contexts can be easily noted in Fig. 2,
where the number of events per minute (attributeRecordFre-
quency statistic) for three archivers of the FERMI lasers are
shown. These complex laser systems count a large number
of equipments that are selectively used, with respect to the
desired laser functionality. The contexts, mapping different
laser functionalities, have been defined and deployed during
the August shut-down period, together with the archiving
strategies for the attributes. The adoption of context-based
archiving led to a significant decrease of the archiving rates,
as just the context relevant attributes are archived at any time.

Figure 2: Archiving rates decrease with context-based
archiving for FERMI laser systems. Graph plotted with
eGiga2k web based tool.

Time-to-live
The support for temporary archiving has been added to

the HDB++. A time-to-live parameter, expressed in hours,
can be defined on per-attribute basis, and is saved as part
of the attribute archiving configuration in the AttributeList
device property, in the form "key=value". An excerpt of
an AttributeList property, with the time-to-live specified, is
depicted in Table 3. A number of TANGO commands and

Table 3: AttributeList Property Configuration Excerpt, Spec-
ifying Time-to-live

tango://srv-tango-srf.fcs.elettra.trieste.it:20000/eos/climate/ ←↩
18b20.01/state; strategy=RUN|SHUTDOWN; ttl=8760
tango://srv-tango-srf.fcs.elettra.trieste.it:20000/pil/laser/ ←↩

evops.01/state; strategy=RUN; ttl=24

attributes have been added to the EventSubscriber Class to
get/set time-to-live on each attribute configuration.
Deleting expired data is delegated to the back-end, with

different implementations betweeen MySQL and Cassan-
dra [3, 4]. For MySQL, a new column has been added to
the att_conf table, and deletion is performed by an external
program, running periodically, comparing the current time
with the data timestamp plus the time-to-live. Cassandra
natively allows to set a time-to-live parameter for each data
and manages deletion internally.

Disk Usage

To reduce disk usage, when required, HDB++ can be
configured with a reduced MySQL schema. Some of the
columns of the tables used to support TANGO data types
have been made optional: two of the three timestamp
columns, e.g. the TANGO event timestamp and the insertion
timestamp, the attribute quality and the error description
carried by the event. If lightschema=true is specified in
the LibConfiguration property, the archiving engine drops
the support for "insert_time", "recv_time", "quality" and
"att_error_desc_id" columns in all tables. Otherwise, at de-
vice startup, the library implementing the HDB++ MySQL
schema checks the tables for "insert_time", "recv_time",
"quality" and "att_error_desc_id" columns and builds a map
with the information on which optional column is configured
in which table.

Back-end Configuration

Configuration for different back-ends is supported via the
LibConfiguration property; a specific set of key=value en-
tries can be specified for each back-end. The libraries im-
plementing the back-end are now dynamically loaded. The
library implementing the interface, libhdbpp, parses the con-
figuration stored in the LibConfiguration property, extracts
the libname key and loads the shared object. Thus, to change
an archiver back-end it is sufficient to change the libname
key in the LibConfiguration property and restart the device.
Moreover, the interface in the libhdbpp library has been

changed to return errors in the back-end functions as ex-
ceptions, that can be reported to the EventSubscriber and
ConfigurationManager devices. The C++ libraries are now
generating meaningful errors, carrying the full error stack
and error description, whenever a problem on the database
back-end arises.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

TUPHA166
802

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Graphical User Interfaces
Both the Java based Configurator GUI and HDB++

Viewer GUI have been improved. The Configurator GUI
supports specifying per-attribute archiving strategies and
time-to-live. The HDB++ Viewer can now display the at-

Figure 3: Java based HDB++ Viewer GUI.

tribute configuration history and attribute quality factor.
Also, makes use of the "Display Unit" and "Conversion
factor" as specified in the attribute configuration; a screen-
shot of HDB++ Viewer showing attribute configuration is
depicted in Fig. 3.
A web-based viewer for HDB++, currently supporting

Cassandra back-end, is under development at MaxIV. The
front-end is based on node.js, Babel, React and Redux and
managed by Webpack, whilst the back-end uses aiohttp and
Boker/datashader. A screenshot is shown in Fig. 4.

Figure 4: HDB++ web-based Viewer GUI under develop-
ment at MaxIV.

CURRENT ISSUES
Cassandra being a distributed database, a special mecha-

nism based on "tombstones" is used to delete data. When
a row is deleted in Cassandra, this actually triggers the in-
sertion of a tombstone identifying the row(s) to be deleted,
with the timestamp associated to the delete. The data is
not immediately deleted. When a user requests rows which
have been deleted, Cassandra will compare the rows coming
from different nodes and their associated timestamps and
return those having the most recent timestamp. If the rows

having the most recent timestamp are tombstones, no data is
returned to the user for these rows. This mechanism prevents
"data resurrection" whenever a node was temporarily down
at the time the data have been deleted. Then, the tombstones
will be deleted by the Cassandra compaction mechanism
after a configurable amount of time (gc_grace parameter).
Cassandra versions older than 2.2.10, 3.0.13 and 3.11.0 are
impacted by a bug [5] which could lead to data resurrec-
tion after a while. The ESRF historical data archive, being
based on Cassandra version 2.2.9, have been affected by this
bug after the introduction of the new time-to-live feature.
Upgrading Cassandra is reported to solve this bug.

HDB++ AT ELETTRA/FERMI
HDB++ is used at Elettra synchrotron and FERMI free

electron laser (FEL). A virtual host for each particle accel-
erator is dedicated to running the MySQL back-end, the
EventSubscriber and the ConfigurationManager TANGO
devices. The Elettra setup consists of ten EventSub-
scribers and one ConfigurationManager, archiving a to-
tal of 2200 attributes. The average archive event rate is
1200 events/minute. For the FERMI FEL, three Configu-
rationManager devices have been deployed, dedicated to
the accelerator, the lasers and the photon optical sampling
systems. A total of 39 archiver instances take care of more
than 8100 attributes. The numbers for Elettra and FERMI
are summarised in Table 4. The current size of the historical

Table 4: HDB++ Deployments at Elettra/FERMI

El
et
tra

EventSubscriber instances 10
ConfigurationManager instances 1
Nr. of attributes archived ~2200
Average events/minute rate ~1200

FE
RM

I EventSubscriber instances 39
ConfigurationManager instances 3
Nr. of attributes archived ~8100
Average events/minute rate ~7300

archive on disk is about 400GB for FERMI.

HDB++ AT ESRF
HDB++ deployment at ESRF is based on 36 EventSub-

scriber instances, archiving more than 8200 attributes into a
Cassandra back-end, featuring six Cassandra nodes, release
2.2.9, in two different data centers. The first data center is
dedicated to operations and accessible for writing by the
archivers; the second is devoted to analytics. Moreover, the
same Cassandra back-end is used for both the accelerator and
the beamlines. The current setup is depicted in Fig. 5. The
number of attributes and average number of archive events/s
in the last three years are shown in Fig. 6. Apache Spark has
been installed on the analytics data center; a simple Spark
cron job, written in SCALA, computing simple statistics and
storing the results in a special Cassandra table is running
once a day. These results are not yet exploited but could

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

Software Technology Evolution
TUPHA166

803

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: Current HDB++ deployment at ESRF.

Figure 6: Number of archived attributes and events/s trends.

be used in the future by the HBDViewer GUI to prevent
huge queries from the users and display only statistics in the
appropriate case. For instance, if a user requests one year of
master source frequency attribute, which is stored 3 times
per second in average, the GUI will display only the 365
statistics computed for each day (min/max/average/standard
deviation values, number of records for the day, number of
errors stored for the day). The user will then hopefully be
able to refine the query to get a more reasonable amount of
data. Currently, the size of the historical database is about
850GB.

HDB++ AT ALBA
HDB++ has been deployed at theMIRAS beamline (2016).

It currently consists of one EventSubscriber instance with
two devices archiving 160 attributes, 20 of them archived
every 200 ms. Beamlines archiving is not centralized at
ALBA, running instead small virtual database servers for
each of them.
A "lite" version of the MySQL schema has been applied

to reduce the disk footprint and memory requirements of an
HDB++ database. The timestamp precission has been lim-
ited to milliseconds and modified to use nativeMySQL types
(DATETIME). It allowed to halve the size of table indexes
and apply monthly table partition. This setup allowed to
load table indexes on RAM, improved overall performance
and enabled online decimation of older data. The yearly disk
footprint has been reduced from 70GB to 37GB.
A new HDB++ archive (MySQL) has been recently de-

ployed for the Radiofrequency andDiagnostics archiving sys-

tem. Attributes are being migrated gradually from polling-
based archiving to HDB++, but the legacy archiving system
may be still running for some years. To allow both systems
to coexist, ALBA added methods to configure HDB++ and
extract data to the PyTangoArchiving library and adapted
the GUI, based on Taurus [6], to be able to plot data from
both archiving systems. A screenshot of the Taurus based
GUI is depicted in Fig. 7.

Figure 7: Taurus based GUI developed at ALBA.

REPOSITORY AND DOCUMENTATION
The HDB++ source code repository has been mi-

grated from Sourceforge to Github. The current re-
lease, as well as the development branch, are available
at: https://github.com/tango-controls and will in
short be available as a dedicated organisation at Github [7].
Improved README and INSTALL instructions are avail-
able for each HDB++ component, as well as the Debian
package build scripts. Moreover, building the HDB++ has
been moved from simple Makefile to cmake. The project
documentation has aligned to the TANGO Collaboration
standard, and is now available on readthedocs [8].

Finally, pre-release Dedian packages are available at bin-
tray [9].

CONCLUSION
At present, the HDB++ archiving system is in produc-

tion at both Elettra/FERMI and ESRF sites since more than
four years, and recently at the ALBA Synchrotron. The
latest developments brought in some new functionalities
to increase efficiency and optimise historical data manage-
ment, improved flexibility for back-end configuration and
more effective graphical user interfaces. Building scripts
for Debian packages are available for HDB++, managing all
dependancies and simplifying installation.

ACKNOWLEDGEMENT
Thank to Johan Forsber from MaxIV for his work on an

alternative web-based historical data browser/viewer.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

TUPHA166
804

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



REFERENCES
[1] TANGO Controls, http://www.tango-controls.org

[2] L. Pivetta et al., “HDB++: a new archiving system for
TANGO”, in Proc. ICALEPCS’15, Melbourne, Australia, Oct.
2015, paper WED3O04, pp. 652–655.

[3] Apache Cassandra, http://cassandra.apache.org

[4] R. Bourtembourg et al., “How Cassandra improves perfor-
mances and availability of HDB++ TANGO archiving system”,
in Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015, pa-
per WEM310, pp. 686–688.

[5] Cassandra bug, https://issues.apache.org/jira/
browse/CASSANDRA-13153

[6] Taurus Scada, http://www.taurus-scada.org

[7] HDB++ repository,
https://github.com/tango-controls-hdbpp

[8] HDB++ project documentation, http://tango-controls.
readthedocs.io/en/latest/tools-and-extensions/
archiving/HDB++.html

[9] Dedian pre-release packages, https://bintray.com/
tango-controls/debian

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

Software Technology Evolution
TUPHA166

805

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


