
MALCOLM: A MIDDLELAYER FRAMEWORK FOR GENERIC
CONTINUOUS SCANNING

T. Cobb, M. Basham, G. Knap, C. Mita, M. Taylor, G. D. Yendell, Diamond Light Source Ltd,
Oxfordshire, UK

A. Greer, Observatory Sciences, Cambridge, UK

Abstract
Malcolm is a middlelayer framework that implements

high level configure/run behaviour of control system
components like those used in continuous scans. It was
created as part of the Mapping project at Diamond Light
Source to improve the performance of continuous scan-
ning and make it easier to share code between beamlines.
It takes the form of a Python framework which wraps up
groups of EPICS PVs into modular "Blocks". A hierarchy
of these can be created, with the Blocks at the top of the
tree providing a higher level scanning interface to GDA,
Diamond's Generic Data Acquisition software. The
framework can be used as a library in continuous scan-
ning scripts, or can act as a server via pluggable commu-
nications modules. It currently has server and client sup-
port for both pvData over pvAccess and JSON over web-
sockets. When running as a webserver this allows a web
GUI to be used to visualize the connections between these
blocks (like the wiring of EPICS areaDetector plugins).
This paper details the architecture and design of frame-
work, and gives some examples of its use at Diamond.

INTRODUCTION
Diamond Light Source [1] is a third-generation 3 GeV

synchrotron light source with 35 independent experi-
mental stations attached to photon beamlines. A number
of these beamlines use a technique called continuous
scanning where motors are moved in a continuous trajec-
tory while a detector takes a number of data frames syn-
chronized with hardware trigger pulses as illustrated in
Fig. 1. This technique increases the efficiency of an ex-
periment by reducing the number of times a motor has to
decelerate, settle and accelerate, effectively decreasing
the scan dead-time.

Figure 1: Detector frames synchronous with a motor un-
dergoing a snake trajectory scan.

THE MAPPING PROJECT
Diamond has multiple beamlines capable of conducting

mapping experiments where the sample is moved through
the X-ray beam and a frame is sampled on one or more
detectors at each point. In 2015, Diamond created the
Mapping Project [2, 3] to enable all beamlines that con-
duct mapping to benefit from common features like live
visualization and processing of data and optimisations
like continuous scanning. A set of 5 beamlines with di-
verse techniques and detectors were selected to participate
in the project to ensure that the stack of components being
developed (as shown in Fig. 2) could be easily deployed
on multiple beamlines and support a variety of experi-
mental equipment and instrumentation.

Figure 2: Mapping Project component stack.

New developments were made in trajectory scanning
the Delta Tau Geobrick [4], writing multi-dimensional
data using HDF5 SWMR [5], live processing and visuali-
zation of data in GDA [6] and DAWN [7], and the Mal-
colm [8] middlelayer that is the subject of this paper.

Detector
Frame

Encoder
Capture

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

TUPHA159
780

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

MALCOLM
Malcolm provides an abstraction layer on top of EPICS

[9] that wraps up groups of PVs and presents a higher
level scanning interface to GDA via pvAccess [10]. This
means that it can take care of the variations in triggering
schemes between different beamlines, and GDA only
needs to pass high level scan parameters such as motion
trajectory and exposure time down, rather than needing to
know how all the underlying devices are wired up.

Blocks, Methods and Attributes
Malcolm defines Blocks, each with a series of Methods

and Attributes, much like instances of classes in an object
oriented language. These are arranged in a hierarchy as
shown in Fig 3.

Figure 3: Layers of Malcolm Blocks.

The lowest level of Blocks in the Hardware Layer are
just a collection of Attributes that correspond to EPICS
devices like a single motor, or the areaDetector [11] HDF
writer plugin.

The Device Layer above this contains Blocks that rep-
resent a whole Detector or Motor Controller. They have
configure() and run() Methods and an Attribute that
shows what state it is currently in. When these methods
are called they co-ordinate their child Hardware Blocks to
perform a scan according to the parameters they are
passed.

The Scan Layer at the top exposes a scanning interface
to GDA. They also have configure and run Methods that
again co-ordinate their child Device Blocks to perform a
scan.

Composing Blocks from Controllers and Parts
A key aim of the Mapping project was to make reusable

components that could be deployed across multiple beam-
lines. Blocks with Methods and Attributes make a good
interface to the outside world, but aren’t the right size to
make re-usable chunks of code. For instance, the config-
ure Method of a Detector Block in the Device Layer
might co-ordinate an areaDetector driver with a chain of a
stats plugin and an HDF writer plugin, but writing a sin-
gle object that did all of this would preclude using it with
the same detector without the stats plugin.

Malcolm solves this by forming a Block by composi-
tion from a co-ordinating Controller and some behaviour

defining Parts. The detector example above is illustrated
in Fig. 4.

Figure 4: Layers of Malcolm Blocks.

Each element in the areaDetector driver and plugin
chain is defined by a Block in the Hardware Layer that
defines the PVs it exports. The Device Block is then
formed from a single Controller and one Part for each
child Block which contains the logic that shows how to
use that Hardware Block within the current scan. This
allows the external interface provided by PVs to be sepa-
rated from small self-contained pieces of code that im-
plement one particular type of logic.

Block Definitions in YAML
As the number of objects in a system grows, configur-

ing them becomes a more complicated task. Malcolm
allows objects to be instantiated by writing configuration
parameters in a structured YAML [12] file as shown in
Fig. 5.

Figure 5: YAML file for simDetector driver Block.

These YAML files define what collection of Controller
and Parts make up a specific Block. They define the pa-
rameters that should be passed to them, and how those
parameters should be used to create Controller and Part
instances. They are also used to create other Block in-
stances that are defined in other YAML files as well as

Hardware

Device

Scan Scan1

Detector1

Detector

Driver

HDF

Writer

Motion

Controller

Sample X
Motor

Device

Detector1 Block

Hardware

Drv Part

Drv
Block

Stats
Part

Stats
Block

HDF
Part

HDF
Block

- builtin.parameters.string:
 name: mri
 description: Malcolm Resource ID

- builtin.parameters.string:
 name: prefix
 description: The root PV for records

- builtin.controllers.StatefulController:
 mri: $(mri)

- ADCore.includes.adbase_parts:
 prefix: $(prefix)

- ca.parts.CADoublePart:
 name: gainX
 description: Image Gain in X
 pv: $(prefix):GainX
 rbvSuff: _RBV
 widget: textinput

...

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

Software Technology Evolution
TUPHA159

781

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

instantiating include files that contain commonly used
Parts.

This whole system is made possible because Parts,
Controllers, Blocks and includes define the type and de-
scription of the arguments that should be passed to them.
This yields several benefits:

 Arguments specified in YAML are validated
and sensible error messages output when con-
figuring an entire Malcolm system.

 Documentation for the arguments to be passed
to each Part, Controller and Block is automati-
cally generated.

 It paves the way for a future tabular GUI edi-
tor for these YAML files.

Loading and Saving Definitions
Another benefit to the split between logic and interface

is that it gives an ideal place to load and save definitions
of Malcolm Blocks. For example, on a detector Block,
there might be a number of parameters like the trigger
mode that Malcolm does not control, but needs to be set
to a particular value in order for a scan to work. Malcolm
has the concept of saving and loading a design, and all
configuration Attributes by default are included in this
design. This means that when a scan is working, the de-
tector design can be saved, and then the design will be
checked and restored if necessary before each scan. It also
allows an Attribute that warns if the design has been mod-
ified and needs to be saved again.

This is useful because it allows end users like beamline
scientists to use this ability to turn on and off features of
Malcolm and create their own saved designs for custom
scans without having to restart or reconfigure Malcolm.

Asynchronous Helper Methods
To make continuous scanning fast, care needs to be

taken about which Attributes can be set at the same time
and whether completion needs to be waited for before
more Attributes are set. For example, let us consider set-
ting 3 Attributes on a Block. Exposure and period need to
be set first, then when they have completed the xml At-
tribute can be set with a value that has to be calculated in
a time consuming manner. Figure 6 shows the inefficient
but readable synchronous style:

Figure 6: Synchronous style configure method.

This code will put and wait for exposure, then put and
wait for period, then calculate a value, then put and wait
for xml. This can be made more efficient by doing both
initial puts at the same time, then doing the calculation
before waiting for completion of the two initial puts.

Figure 7 shows this code written in an efficient but less
readable callback style:

Figure 7: Callback style configure method.

This is much more efficient because the time where the
synchronous code was waiting for puts to complete is
now spent calculating a value. Unfortunately the code is
now less readable because you have to read the callback
function to follow the control flow. Figure 8 shows how
this can be improved by using a futures style.

Figure 8: Futures style configure method.

This does exactly the same as the callback style, but
wraps up the callback functions in Future objects that can
be waited on. This restores the linear nature of the code
and makes it readable again. Malcolm exposes the helper
methods needed to allow this futures style to be written
side by side with the synchronous style to allow code to
retain its readability.

COMMUNICATING WITH MALCOLM
 Although Malcolm can be run standalone as a library,

the most common use case is to add some communica-
tions modules to it to allow it to be communicated with
from the outside. The two used at Diamond are websock-
ets [13] to allow a web GUI configuration view and
pvAccess for control system access from GDA.

Websockets
This communications module exposes the structure of

Malcolm Blocks via a JSON [14] protocol over websock-
ets. There is a client MalcolmJS [15] library that is used
to create a web GUI to allow configuration of the under-
lying Blocks from a web browser. It is generally used to
wire Hardware Blocks together and load/save configura-
tions. Figure 9 shows its use in wiring together Blocks to
configure a PandABox [16].

def configure(self, block, params):
 block.exposure.put_value(
 params.exposure)
 block.period.put_value(
 params.exposure)
 xml = self.time_consuming_f(params)
 block.xml.put_value(xml)

def cb(self, value):
 self.q.put(value)

def configure(self, block, params):
 self.q = Queue()
 block.exposure.put_value_async(
 params.exposure, self.cb)
 block.period.put_value_async(
 params.exposure, self.cb)
 xml = self.time_consuming_f(params)
 for i in range(2):
 assert not isinstance(
 q.get(), Exception)

block.xml.put_value(xml)

def configure(self, block, params):
 fs = block.put_values_async(
 exposure=params.exposure,
 period=params.exposure)
 xml = self.time_consuming_f(params)
 block.wait_futures(fs)

block.xml.put_value(xml)

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

TUPHA159
782

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 9: Malcolm web GUI configuring a PandABox.

pvAccess
GDA communicates with the top level scan Block, con-

figuring it with a set of parameters then telling it to run.
These are done using the pvaPy [17] Python bindings to
pvAccess in Malcolm, and the pvAccessJava [18] bind-
ings on the GDA side. Methods support Get and Monitor
for introspection of requested arguments and RPC for
calling them. Attributes support Get and Monitor for
introspection of value, timestamp, alarm status and de-
scriptive metadata, and Put for changing value.

Serialization of Blocks in Malcolm
To allow the web GUI to introspect the Blocks that can

be connected and which parameters can be set on them
and to allow GDA to introspect configure arguments,
Block structures can be serialized. All data classes in
Malcolm have to_dict() and from_dict() methods
allowing their structure to be exposed to the outside
world. Figure 10 shows the serialized version of a Block
as described in pvData Meta Language [19].

Figure 10: Block structure.

Every Block has some metadata about itself, an Attribute
displaying its health, and optional additional Attributes
and Methods.

Figure 11 shows the serialized version of an Attribute.

Figure 11: Attribute structure.

This is conformant to an EPICS V4 Normative Types
[20] NTScalar because the value, alarm and timeStamp
fields are present, but the metadata like descriptor, display
and control have been moved to a child ScalarMeta ob-
ject. This allows metadata to be specified separately to
transient fields like value and timeStamp, allowing the
same Meta objects to be reused to specify the arguments
that should be passed to a Method.

Figure 12 demonstrates the serialized version of a Meta
object.

Figure 12: ScalarMeta structure.

It contains some of the meta information that would
normally appear in the NTScalar, with some additions for
specific Meta objects like the dtype (e.g. uint32) for the
NumberMeta.

Serialization of Blocks in GDA
To facilitate communication between GDA and Mal-

colm over the pvAccess channel, a serialization library
was built in Java to convert Java objects into PVStruc-
tures and vice versa. The pvMarshaller [21] library takes
any Java object, inspects its members using the Java Re-
flection API, and creates a representation of that object in
a PVStructure as shown in Fig. 13.

Figure 13: pvMarshaller serialization and deserialization.

Block :=

malcolm:core/Block:1.0
 BlockMeta meta
 Attribute health
 {Attribute <attribute-name>}0+
 {Method <method-name>}0+

Attribute := Scalar | ScalarArray | …

Scalar :=

epics:nt/NTScalar:1.0
 scalar_t value
 alarm_t alarm :opt
 time_t timeStamp :opt
 ScalarMeta meta :opt

ScalarMeta := NumberMeta | StringMeta …

NumberMeta :=

malcolm:core/NumberMeta:1.0
 string dtype
 string description
 string[] tags :opt
 bool writeable :opt
 string label :opt
 display_t display :opt
 control_t control :opt

Java Object
class MyClass {
 String Description = “Example”;
 int Count = 123;
 Boolean Used = true;
 List<String> Names = Arrays.asList(
 “alice”, “bob”);
}

PVStructure
structure
 string Description Example
 int Count 123
 boolean Used true
 string[] Names [alice,bob]

pvMarshaller

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

Software Technology Evolution
TUPHA159

783

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

When deserializing from a PVStructure object into a
Java object, a new Java object of the target class is creat-
ed and its members populated with the values from the
source PVStructure. If the target class is not known, there
are mechanisms for determining it from the PVStructure
Key, and if this is not specified, a Java Map object is
created consisting of the key-value pairs from the
PVStructure. Advanced features of the library include the
ability to specify members to exclude from serialization,
and the ability for users to create custom serializers and
deserializers for classes whose member structures don’t
map exactly to the desired PVStructure.

CONCLUSION

Malcolm was created as an application to support ge-
neric continuous scanning across multiple diverse beam-
lines at Diamond. It aims to produce flexible, concise and
maintainable applications by providing tools to encourage
reuse of code, reducing future support effort for the main-
taining groups. Its pluggable communications modules
allow it to be configured from a web GUI and to act as a
service among the other elements that make up experi-
mental control. A rollout project is underway to expand its
use from the 5 initial beamlines to any Diamond beamline
that could benefit from continuous scanning.

REFERENCES
[1] R. P. Walker et al., “Commissioning and Status of

the Diamond Storage Ring”, in Proc. IPAC 2017,
Copenhagen, Denmark.

[2] M. Basham, J. Filik, “Generic Mapping Scans at
Diamond Light Source”, in Proc. NOBUGS 2016,
Copenhagen, Denmark.

[3] R. Walton, “Mapping Developments at Diamond”,
in Proc. ICALEPCS 2015, Melbourne, Australia.

[4] Delta Tau Geobrick, http://www.deltatau.com
[5] N. Rees, “Developing Hdf5 for The Synchrotron

Community”, in Proc. ICALEPCS 2015, Melbourne,
Australia.

[6] E. P. Gibbons, M. T. Heron, N. P. Rees, “GDA and
EPICS: working in unison for science driven data
acquisition and control at Diamond light source”, in
Proc. ICALEPCS 2011, Grenoble, France

[7] M. Basham et al., “Data Analysis WorkbeNch
(DAWN)”, Journal of synchrotron radiation, vol.
22, pp. 828-838.

[8] Malcolm,
http://pymalcolm.readthedocs.io/en/latest/.

[9] EPICS, http://www.aps.anl.gov/epics/.
[10] pvAccess, http://epics-pvdata.sourceforge.net
[11] EPICS areaDetector,

http://cars9.uchicago.edu/software/epics/
areaDetector.html

[12] YAML, http://yaml.org

[13] websocket, https://www.websocket.org
[14] JSON, http://www.json.org
[15] I. Gillingham and T. Cobb, “MalcolmJS: a Browser-

Based Graphical User Interface”, presented at
ICALEPCS’17, Barcelona, Spain, May 2016, paper
THPHA184, this conference.

[16] S. Zhang et al, “PandABox: A Multipurpose Plat-
form for Multi-technique Scanning and Feedback
Applications”, presented at ICALEPCS’17, Barce-
lona, Spain, May 2016, paper TUAPL05, this con-
ference

[17] S. Veseli, “PvaPy: Python API for EPICS PV Ac-
cess”, in Proc. ICALEPCS 2015, Melboure, Austral-
ia.

[18] pvAccessJava, https://github.com/epics-
base/pvAccessJava

[19] pvData Meta Language, http://epics-
pvdata.sourceforge.net/
docbuild/pvDataJava/tip/documentation/pvData
Java.html#pvdata_meta_language

[20] EPICS V4 Normative Types, http://epics-
pvda-
ta.sourceforge.net/alpha/normativeTypes/norm
ativeTypes.html

[21] pvMarshaller,
https://github.com/DiamondLightSource/pv-
marshaller

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA159

TUPHA159
784

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

