
A DATABASE TO STORE EPICS CONFIGURATION DATA
M. Ritzert∗, Heidelberg University, Mannheim, Germany†

Abstract
The operation of extensive control systems cannot be per-

formed by adjusting all parameters one by one manually.

Instead, a set of parameters is loaded and applied in bulk.

We present a system to store such parameter sets in a type-

safe fashion into and retrieve them from a configuration

database.

The configuration database is backed by an SQL database.

Interfaces to store and retrieve data exist for the C++, Java

and Python programming languages. GUIs are available

both as a standalone program using C++ and Qt, and inte-

grated into Control System Studio (CSS) [1]. The version

integrated into CSS supports data validators implemented

as Eclipse plug-ins that are run before each commit.

The format of the configuration data that can be stored

is XML-like, and export and import to/from XML is im-

plemented. The database can hold several completely inde-

pendent “files” of configuration data. In each file, several

branches can be stored, each branch consisting of a chain

of commits. Each commit can easily be retrieved at any

time. For each entry, the modification history can easily be

queried.

INTRODUCTION
The context of the software presented here is the slow-

control system of the Belle II pixel detector (PXD) [2].

The format of the data that is stored is similar to the struc-

ture of XML files: A tree structure of nodes gives structure

to the data, and each leaf node contains one data point. To

simplify integration with EPICS [3], a way to assign a PV

name to each leaf is defined. For that purpose, attributes can

be added to each node that add part of a PV name, or define

units (for display purposes), or minimum and maximum

values.

The database provides versioning of the data. It can con-

tain several independent data sets, called files, and for each

file, several commits can be stored in several branches. This

structure is also shown in Fig. 1. The data are stored in such

a way that any commit can be identified through just a single

integer variable, the commit id. No data are ever overwritten,

only updates creating new commits are possible.

One important decision taken during the design phase is

that the access to the configuration storage has been sep-

arated from the hardware access. The IOC accessing the

configuration database reacts to just one PV defining the

commit id to load, and exports all PVs defined in the data

set. On the hardware access side, the configuration data are

taken from these PVs and applied to the hardware at the

appropriate time, usually by means of a state machine.

∗ michael.ritzert@ziti.uni-heidelberg.de
† For the DEPFET Collaboration

database

branch
commit

file

Figure 1: Contents of the Database. Several files with several

branches and several commits per branch can be stored.

The overview of the proposed system is shown in Fig. 2:

The editor is used to put the correct configuration into the

database, from where it is retrieved by the configuration

IOC. The IOC extracts the stored PV names and makes then

available via the Channel Access protocol. State machines

that control the configuration of the various subsystems read

the data and apply them to the hardware.

Storage in the database and editing via the APIs are type

safe. The supported data types are integer, floating point,

string, and arbitrary-length binary. The data structures are

compatible with the XML format, and this is the default

format when importing from or exporting to a file.

DESCRIPTION OF THE SYSTEM
Graphical User Interface

The main interface to edit the configuration data is through

an interface integrated into Control System Studio (CSS). In

Fig. 3, the editor view available in the CSS environment is

shown.

To help with the implementation of OPIs working with

the configuration database, a Jython module is provided that

can be used to access configuration database functionality

from within OPI scripts. The OPIs can use a special data

source, config://, to access the loaded configuration and its

metadata. Together, this allows for device-specific configu-

ration screens to be easily developed by means of the OPI

editor.

It is also possible to compare the loaded configuration

with the currently active values, and to selectively accept

new values into the database.

Validation In order to prevent the operator from en-

tering invalid data into the database, all data are validated

before they are committed to the database. The idea is to

detect obvious errors in the configuration way before it is

activated in the system. The validation is run immediately

before uploading to the database, and the results are reported

to the user in the CSS GUI.

A generic framework to validate settings against fixed lim-

its is available. As an example, typical limits could define

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA143

Integrating Diverse Systems
TUPHA143

745

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Con g
IOC

de
ne

d 
PV

s
w

ith
 p

re
x

CSS

co
n

gu
ra

tio
n

to
 b

e 
ed

ite
d

Control
Sequence

Hardware
Devices

Run ControlCommit id

Databaseedit load read apply

Figure 2: Overview of a control system using the configuration database.

Figure 3: Screenshot of the main configuration editor inte-

grated into CSS.

hard voltage or current limits of power supply units. Beyond

simple limits for single settings, in virtually any complex

system, there are interdependencies between various set-

tings. A framework to implement such checks in Java code

is available.

History View For each commit, descriptive metadata is

stored. This includes a free-text commit messages, the user-

name performing the commit, and the current timestamp.

Changes to the data over time can be visualized in several

ways. It is possible to query the history of a selected value,

displaying the metadata of all commits that altered it. An-

other display shows all configuration differences between

two commits.

Programming Language Interfaces
No complicated algorithms need to be implemented for

the database, so supporting several interfaces in different

languages is easily possible. The most advanced interface is

in the form of the Java module that’s also behind the CSS

GUI. An implementation is C++ has been used to create the

configuration database IOC, and a basic, standalone GUI in

the form of a Qt application. An interface to the configu-

ration database from Python is also available. In the PXD

use case, this is used to automatically upload new calibra-

tion constants generated in a Python-driven measurement

campaign.

Configuration Database IOC
The final part of the configuration database environment is

the IOC that retrieves the data from the database and exports

A

B D

C E

A

BD

CE

A

B

C

A

B D

C E

Figure 4: Node structure stored in the database. Left: Ini-

tial. Middle: After changing C to C’. Right: Only nodes

reachable from A’.

the defined PVs. To load a new configuration, the desired

commit id is written to the only writable PV managed by

the IOC. The IOC then loads the configuration and exports

the defined PVs. A fixed prefix is added to each PV, so that

it doesn’t collide with the active PVs, and to allow several

configuration IOCs to run in parallel.

IMPLEMENTATION
Database

The data are stored using a data model that represents a

“walking tree” data structure. The nodes of the tree are stored

as individual rows, with an M : N relationship between

parent and child nodes: Obviously, each parent can have

several children, and multiple parents of a node belong to

different revisions of the data set. Updating a commit with

new data requires only the leafs containing new data, and

all nodes from these leafs up to the root of the tree to be

written. All other data can be reused, so that the storage

requirements are greatly reduced. As new nodes are written,

they are assigned unique ids. Knowing the id of the newly

written root node is sufficient to retrieve all data for the tree

with a single, recursive select statement. This is also shown

in Fig. 4: On the left, an initial tree is shown. In the image

in the middle, a new revision has been committed, where C
has been changed to C ′. All data in blue had to be added to

store this update. Node D now has two parents. On the right,

the correctly updated tree that is returned when descending

from the new root node A′ is shown.

Access restrictions on PostgreSQL level ensure that no

data can be modified once it has been committed. The im-

plemented rules only allow new rows to be added to the

database, but no updates of existing data. This ensures that

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA143

TUPHA143
746

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems



once a commit has been stored in the database, its data can-

not be altered in any way.

The current implementation uses the PostgreSQL data-

base, but the Java implementation uses the generic JDBC

database access layer, and could easily be ported to any RDB

implementation that supports some kind of recursive query1.

CSS Graphical User Interface
The GUI that can be integrated into CSS (or any other

Eclipse-based application) uses the standard widget toolkit

(SWT) [4] for a seamless integration. It provides a new view

“Config-DB” that serves as the entry point to all configuration

database functionality. Other views such as the history view,

or the differences view are accessed via the view’s menu.

A RAP version for access via the Internet is also available.

The config:// datasource integrates into the diirt frame-

work [5]. It enables access to all PVs defined in the currently

loaded data set, as well as all corresponding metadata. A

class providing static functions that is exposed to the Jython

interpreter used by OPI scripts can be used to trigger actions

in the configuration database from any OPI.

Validation The implementation of the validation frame-

work is easily extensible, since it uses Eclipse plug-in exten-

sion points to decouple the validation framework from the

various validators. All configuration data are available to a

validator implementing the extension point, so that complex

checks can be performed.

The static limit validator included with the CSS GUI uses

XML files that map regular expression for the defined PV

names to the corresponding limits. These XML files can

be packaged in an Eclipse plug-in so that new settings can

easily be distributed via the Eclipse p2 update mechanism.

More complex checks can be implemented in a new plug-in

that can also be managed via p2.

Configuration Database IOC
The main challenge in the implementation is that the set

of exported PVs is dynamic, depending on the loaded con-

figuration. Therefore, the CA server library [6] is used to

implement the IOC in C++.

There is no hardware access in the configuration IOC.

Instead, each device uses a state machine to apply the data

1 MSSQL (CTE), and Oracle (CONNECT BY) should work.

to the hardware after retrieving them from the configuration

IOC.

In the case of the PXD, the various state machines are

synchronized by means of a global run control/power sup-

ply control scheme [7], and loading a new data set is only

possible when the systems are in the idle state. Addition-

ally, direct write access to devices’ PVs by the operator is

prohibited in a PV gateway [8] while any system is running.

CONCLUSION
We present a solution to manage configuration data for

an EPICS-based control system in a database. The system

comprises the API implemented in various programming

languages, a powerful, extensible implementation of a con-

figuration editor integrated in the CSS environment, and an

IOC to provide the configuration to the control system.

ACKNOWLEDGEMENTS
This work has been supported by the German Federal

Ministry of Education and Research (BMBF).

REFERENCES
[1] “Control system studio,” http://controlsystemstudio.org

[2] M. Ritzert, “Status of the epics-based control and interlock

system of the belle ii pxd,” in Proc. 15th International Confer-
ence on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2015), 10 2015, paper MOPGF164.

[3] “Experimental physics and industrial control system,” http:

//www.aps.anl.gov/epics

[4] “Swt: The standard widget toolkit,” https://www.eclipse.org/

swt

[5] “diirt: Data integration in real-time,” http://diirt.org

[6] “Cas: Channel access server library,” http://aps.anl.gov/epics/

extensions/cas/index.php

[7] T. Konno, R. Itoh, M. Nakao, S. Y. Suzuki, and S. Yamada,

“The slow control and data quality monitoring system for the

belle ii experiment,” IEEE Transactions on Nuclear Science,

vol. 62, no. 3, pp. 897–902, 06 2015.

[8] “Gateway: The process variable gateway,” http://www.aps.anl.

gov/epics/extensions/gateway

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA143

Integrating Diverse Systems
TUPHA143

747

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


