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Abstract
We have developed the TiCkS board (Time and Clock 

Stamping) based on the White Rabbit (WR) SPEC node 
(Simple PCIe FMC carrier), to provide ns-precision time-
stamps  (TSs)  of  input  signals  (e.g.,  triggers  from  a 
connected  device)  and  transmission  of  these  TSs  to  a 
central collection point.

TiCkS was developed within the specifications of the 
Cherenkov  Telescope  Array  (CTA)  as  one  of  the 
candidate TS nodes, with a small form-factor allowing its 
use in any CTA camera.

The essence of this development concerns the firmware 
in its Spartan-6 FPGA (Field-Programmable Gate Array), 
with  the  addition  of:  1)  a  ns-precision  TDC (Time-to-
Digital Convertor) for the TSs; and 2) a UDP stack (User 
Datagram Protocol) to send TSs and auxiliary information 
over the WR fibre, and to receive configuration & slow 
control commands over the same fibre. 

It  also provides  a  PPS (Pulse  Per  Second)  and other 
clock signals to the connected device, from which it can 
receive auxiliary event-type information over an SPI link 
(Serial Peripheral Interface).

A version of  TiCkS with an  FMC connector  (FPGA 
Mezzanine  Card)  will  be  made  available  in  the  WR 
OpenHardware  repository,  so  allowing  the  use  of  a 
mezzanine  card  with  varied  formats  of  input/output 
connectors,  providing  a  cheap,  flexible,  and  reliable 
solution for ns-precision time-stamping of trigger signals 
up to 400 kHz, for use in other experiments.

CTA: CHERENKOV TELESCOPE ARRAY

The Cherenkov Telescope Array (CTA) [1] will be a 
gamma-ray  observatory  in  the  very-high-energy  range 
(VHE,  above  around  30  GeV),  consisting  of  over  100 
imaging  atmospheric  Cherenkov  telescopes  (IACTs) 
distributed  over  two sites,  one  in  each  hemisphere;  La 
Palma,  Spain  and  the  Atacama  desert  in  Chile.   The 
telescopes  detect  the  few-nanosecond  Cherenkov  light 
flashes from the showers of particles (EAS, Extended Air 
Showers) initiated by gamma rays from cosmic sources, 
but also those produced by charged cosmic rays,  which 
are thus background noise. 

CTA will  use  a  SoftWare  Array  Trigger  (SWAT)  to 
detect time coincidences – within a window up to 100 ns 
–  between  the  signals  from  each  telescope’s  Camera 
Trigger Management electronics (CTM).  This allows the 
rejection  of  non-coincident  images  from  Night-Sky 
Background  light  or  isolated  muons,  and  the  “event-
building” for stereoscopic events.  Such a SWAT can be 
more flexible than a hardware trigger using transmission 
of analogue trigger signals and delay lines to correct for 
differential delays due to different sky-pointings.

The  SWAT  needs  accurate  relative  TSs  from  each 
telescope’s CTM, which it can correct in software for the 
telescope  pointing  directions,  and  identify  coincidences 
within  a  flexible  coincidence  window,  with  a  flexible 
topology and coincidence logic. 

The White Rabbit (WR) technology has been adopted 
by CTA for this time-stamping.  The TS relative accuracy 
for trigger coincidence identification for event-building is 
only at the tens of ns level.  But, the timing information in 
the “wave-front” of Cherenkov photons hitting the array 
may contain further information, though likely redundant 
with the imaging information.  Nonetheless, since the WR 
technology  permits  this,  a  2 ns  rms  relative  accuracy 
requirement was adopted CTA’s timing nodes TSs.

WHITE RABBIT TECHNOLOGY

White Rabbit [2] is  an Open Hardware and Software 
project  to  provide  sub-nanosecond  synchronization 
accuracy combined with the flexibility and modularity of 
real-time  Ethernet  networks,  based  on  timing 
synchronization over mono-mode fibres. It was initiated 
by  CERN,  the  GSI  Helmholtz  Centre  for  Heavy  Ion 
Research,  and  other  partners  from  universities  and 
industry starting in 2009.   It is hoped that White-Rabbit 
will become a high-performance standard implementation 
of a future revised Precision Time Protocol.

For the purposes of CTA, WR permits to distribute the 
time from a central clock system to WR “nodes” in each 
telescope  camera,  over  a  hierarchical  network  of  WR-
compatible switches located  at  the array  control  centre. 
The WR-nodes  time-stamp trigger  signals  from CTMs; 
both  for  “read-out”  events  for  which  there  should  be 
corresponding  image  data,  and  for  “busy”  triggers  for 
those  cameras  which  have  dead-time  (since  the  overall 
trigger pattern is useful at the event-reconstruction level).

Event  and  PPS  counters  in  the  camera’s  trigger 
electronics and its WR-node allow the image data to be 
combined with their time-stamps.

The White-Rabbit network itself may be used to collect 
the  time-stamps  from  all  telescopes  at  a  central  point, 
where the trigger coincidence logic can be implemented 
in  a  SoftWare  Array  Trigger  (SWAT),  and  the 
coincidence information forwarded to each camera’s data-
processing pipeline to allow non-coincident trigger image 
data to be dropped. 

TICKS: TIME & CLOCK STAMPING

We have developed the TiCkS board (Time and Clock 
Stamping) based  on the WR SPEC node (Simple PCIe 
FMC carrier) [3].

The  signals  which  are  exchanged  with  the  trigger 
electronics  of  the  camera,  using  LVDS  pairs  (Low 
Voltage Differential  Signalling) for transmission, follow 
the agreed CTA interface definition:

______________________________________________

1 email address cedric.champion@apc.univ-paris7.fr
‡ also at Linnaeus University, Växjö, Sweden
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• Camera → TiCkS:

○ Read-out Trigger signals

○ Busy Trigger  Signals  (Optional,  only  used 

for cameras with non-negligible dead-time)

○ (Optional)  SPI (Serial  Peripheral  Interface) 

clock, data, and chip-select lines
• TiCkS → Camera

○ PPS signal (Pulse Per Second), synchronized 

with the central clock via White Rabbit

○ 10MHz clock, aligned with the PPS (for the 

cameras  under  test  for  this  development, 
other cameras may use a different frequency)

○ External  trigger  signal,  where  the  TiCkS 

trigger the camera at a defined TAI time.
This interface suffices to achieve the time-stamping and 

timing system monitoring functionality required by CTA.

Hardware

The SPEC node has been modified to reduce the form 
factor to 16.4✕6.0✕2.7 cm, removing the unused elements 
which  are  the  PCI  controller  and  connector,  DDR3 
memory,  one  of  the  SATA  connectors,  and  –  for  the 
CTA-specific version – also the FMC connector which is 
replaced by two RJ45 jacks.

The power circuitry was adapted to allow 24V supply 
for  the CTA-specific  version.   This only necessitated  a 
change in the value of certain capacitors, inductances, and 
MOSFET, with the voltage regulator remaining the same. 
Thus, either the 12V or 24V supply version can be chosen 
when  the  board  is  stuffed.   A  more  sturdy  power 
connector (Buchanan terminal block) is chosen for the 30-
year planned lifetime of CTA, for operation in cameras 
which reposition quickly.

The current drawn in operation is 160mA at 24V, so the 
power  consumption is under 4W.  The cost  of  a  small 
serial production (~5) is under 500€ per board, including 
the SFP module interface to the fibre-optic cable. 

Firmware

The firmware  of  the TiCkS is based on the standard 
WR core (v4.0 [4] was used in the tests below).

The  WR-core  provides  a  PPS  and  125 MHz  clock 
(referred  to  as  “WR-clock”  below)  which  are 
synchronized  with  the  central  clock  over  the  fibre  and 
WR switch link. So, natively,  it  can time-stamp signals 
with 8 ns precision.

To  achieve  ns-precision  time-stamping  of  the  input 
trigger signal, we use a 8-bit I/O-SerDes (Input/Output-
SerializerDeserializer)  clocked  at  1 GHz  SDR  (Single 
Data Rate), where the 1 Ghz is generated by a Xilinx PLL 
from  the  WR  125 MHz  clock.  This  is  used  as  a  shift 
register, and with some programmable logic resources for 
resynchronization  purposes.   We  name  this  the  “fine-
TDC”.  The trigger signal from the CTM is fed into this 
fine-TDC, and in parallel is sent to the event counter (for 
which, the signal must be >20 ns to be counted).

A counter referred to as the “coarse-TDC”  is used to 
keep track of the ticks of the WR-clock (every 8 ns).  This 
counter is zeroed by the WR-PPS signal.  At each tick of 
the WR-clock, the contents of the fine-TDC shift register 
are  read,  the  presence  of  a  rising  front  (reading 
MSB→LSB)  in  the  register  raises  a  flag  that  the  fine-
TDC has data, with the front position giving the number 
of nanoseconds since the last WR-clock tick.   The flag 
triggers the read-out of the coarse-TDC counter together 
with the WR-provided International Atomic Time (TAI) 
seconds value, and a new flag that these data are ready is 
raised.   These  data  constitute  the  full  ns-precision  TS, 
which is stored in a buffer.   Finally, the coarse TDC is 
incremented whether or not there was a trigger.

On the subsequent tick of the Spartan-6 system clock 
(at  62.5 MHz),  if  there  is  a  flag  that  the  time-stamp is 
ready, the LSB (least-significant bit) parts of the data are 
put  in  a  FIFO, where  these  are  described  in  the “Data 
format,  reception,  and  control”  section  below,  and  is 
resynchronized  with  the  62.5 MHz  domain  to  avoid 
metastable  states,  after  which  the  data-ready  flag  is 
lowered  again.  The FIFO used  is  one  provided  by  the 
WR-core, with a width of 96-bit words (12 bytes) and a 
depth  of  40  words  (twice  the  depth  of  the  packets  of 
events which are sent, see below).

We found that a significant dead-time was introduced 
during the read-out of the 96-bit word FIFO to the 16-bit 
word  UDP  stack  (6  clock  cycles  per  event).   To  get 
around this,  as a  “fix” we use a MUX (multiplexer)  to 
switch between two such FIFOs, in ping-pong mode.

The accompanying SPI data, currently 16-bits of event-
type and related data, is awaited, and added to the word in 
the FIFO.  The SPI-core used is that from OpenCores [5], 
running  at  50 MHz,  so  it  should  take  ~320 ns  for  the 
16 bits of data to arrive from the CTM.  Once it is ready, 
the SPI data register is added to the word in the FIFO, but 
in any case a time-out is implemented currently at 400 ns, 
after which the TiCkS allows new triggers to be input for 
time-stamping. 

Note that  this  procedure  is  applied independently for 
both the read-out triggers and the busy triggers, with two 
instances of all TDCs and counters being implemented for 
this purpose.

Once  the  FIFO  has  reached  20  events,  or  after  a 
predetermined time-out of 200 ms since the previous time 
it was emptied, then the full parts of the final  TS (LSB 
and MSB, Most Significant Bits), and the full contents of 
the counters are added as a “tailer”.

The  resulting  “bunch”  of  up  to  20  events  with  their 
tailer is sent over the WR-fibre and WR-switches link to a 
predefined address using the UDP protocol.  We use the 

Figure  1:  Photo  of  the  TiCkS  board.  The  two  RJ45 
connectors are on the left (“A” being the required timing 
connector, and “B” the optional busy and serial interface 
connector), with the cage for the SFP module on the right. 
The mini-USB connector is on the underside of the board.
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UDP stack from OpenCores [6].  The choice of UDP was 
made  for  simplicity  and  availability,  with  the 
consideration that UDP can reach higher throughput than 
TCP or more complex protocols, with faster connection 
setup since there is no initial  handshake, and achieving 
faster packet delivery times, lower latency, and less risk 
of overloading the network by re-sending of lost packets 
(since  UDP  drops  packets  silently).   But,  there  is  the 
corresponding  risk  of  some  packet  drop,  which  is 
mitigated by having the WR network on its own VLAN, 
and as shown below is negligible at the rates considered 
for CTA.

The  firmware  has  the  following  summary 
characteristics,  for  the  Spartan  6  xc6slx45t-3fgg484 
target device and version ISE 14.7, it is using 6735 slice 
registers (12% of the available resources), and one of the 
eight high-speed I/O buffers (BUFPLL), but all four of the 
available Phase Locked Loops (PLL_ADVs). 

Data Format, Reception, and Control

Data  Format: The  data  format  was  refined  over 
several iterations in order to minimize the average event 
size.   Individual  event  records  contain  only  the  Least 
Significant  Bits (LSBs) of the different counter and TS 
fields, i.e., those which are susceptible to change within a 
bunch given its number of events and limit in time due to 
the time-out for sending bunches, allowing this event size 
to  be  reduced  to  12 bytes.   The  20-byte  bunch  tailer 
contains the full information for the counters and fields 
for  the  final  event,  with  which  each  event  can  be 
unambiguously reconstituted.

If  every  event  contained  the  full  information,  then 
157 bits would be required (i.e., just under 20 bytes) plus 
42 bytes of overhead.   Whereas,  packing the events in 
bunches of 20 gives a reduction of average event size to 
15 bytes with overhead, so a reduction of 75%.  This may 
be important since the WR links are currently at 1 Gbps.

A further advantage of grouping the events in bunches, 
is that it is strongly discouraged to have too-small packets 
(requiring CPU processing power for  reception) or too-
large (with higher probability of loss and fragmentation). 
A  size  of  around  500 bytes  is  usually  recommended, 
which is close to the 302-byte packets resulting from the 
20-event bunches plus tailer, plus other overheads.

For a telescope at a maximum rate of 15 kHz, this gives 
a TS and associated data stream of 1.8 Mbps, which must 
traverse the 1 Gbps WR link, but at the uplink of the WR 
switch,  it  must  share  this  with  the  other  –  up  to  17  – 
telescopes on that switch.  So the maximum rate could be 
31 Mbps at that point, or only ~3% occupation (with an 
equivalent packet rate below 13000 packets/second).

Note  that  in  a  previous  version  of  the  WR-switch 
firmware (v3.3) the switch started to lose frames at high 
link loads, especially at low (~64-byte) payloads (see [7]). 
 Though  this  problem  has  been  resolved  in  the  latest 
firmware versions, we consider it nonetheless prudent to 
have payloads of reasonable size combined with rates on 
the link which are far below 100%.

Data Reception: For the reception of the bunches, we 
have implemented a library in “c” which decodes the data 
bunches which arrive via UDP and reconstitute the events 

individually in  a standard  c structure,  with no packing. 
This library can be used by whichever instance is required 
to receive the TSs and associated data.

For the tests described below, a process receives the TS 
bunch  stream  and  either  writes  the  TS  data  for  later 
analysis,  or  produces  a histogram of the distribution of 
times  between  successive  events  and  successive  event 
numbers.  This has been essential for the initial debugging 
phase.  The test-bench acquisition ran on a rather old PC 
with an Intel Core2 Duo Processor E8600. 

Testing  our  decoding  library  gives  that  13 ns  are 
required for decoding, 34 ns if additionally each event is 
added to a histogram, and 583 ns if they are also all saved 
to disk.  So, even old hardware should be able to treat up 
to 1.7 MHz of TS data, which is a factor >4 above the full 
CTA Southern array TS rate from all telescopes.

For  integration  tests  with  CTA  cameras,  we  have 
implemented a process which receives the UDP TS bunch 
stream, decodes it into the c-structure per event, and sends 
it on over TCP to the Camera event builder.  Note that the 
downstream links no longer have the WR 1 Gbps limit, 
but are rather at 10 Gbps, so there is no need to pack the 
events for best performance.  This set-up has successfully 
operated for the integration tests with partial cameras of 
the MST-NectarCam and LST cameras  (see [8]  for  the 
common CTM, named the Trigger Interface Board).

Control: The TiCkS board is controlled by sending it 
commands using the UDP stack.

For the initial  configuration,  it  obtains  its  IP  address 
from  a  DHCP  server  which  should  be  available  and 
configured on the network, otherwise it defaults to a fixed 
address.   Then,  it  should  be  sent  the  MAC address  to 
which it should send its bunches, while the corresponding 
IP address is computed from the TiCkS’s own IP address 
by replacing the final 10 bits with a fixed value, and the 
port to which it sends these is a pre-defined fixed value. 
With this configuration, the TiCkS can send its bunches to 
a designated machine on the network.

Another command permits to send the TiCkS a precise 
time  in  TAI  at  which  it  will  then  emit  an  “external 
trigger” to the CTM.  For simplicity of implementation, 
always aligned with the 8 ns precision of the WR clock.

Two  further  commands  allow  to  ensure  that  the 
counters  in  both  the  CTM  and  the  TiCkS  are  reset 
simultaneously  following  a  well-defined  state  machine. 
The “reset” command to the TiCkS sets the event and PPS 
counters to zero, and maintains them in that state.  The 
counters  in  the  CTM can then  be  reset  via  the camera 
control,  and  the  CTM placed  in  a  “get-ready”  state  in 
which it awaits a (false) external trigger from the TiCkS 
before re-starting triggering.  The “get-ready” command 
sent to the TiCkS then will cause it to send an external 
trigger just after the succeeding PPS, at which point both 
the  CTM  counters  and  the  TiCkS  counters  will  be 
synchronized at zero, and both will go into the “running” 
state.  However, it should be relatively simple in software 
to determine counter offsets at a given time, e.g., after the 
PPS, so this procedure may not be required.

In  a  future  version  we  plan  to  also  add  further 
commands, such as: to configure the IP address and port 
that the TiCkS sends the data; to set the wait time for SPI 
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between events (or minimum time between triggers); and 
to set the time-out after which a non-full bunch is sent. 
The current defaults are reasonable for normal operation, 
but these changes should be quite easily implemented, as 
not affecting the delicate timing logic.

We plan  to  also  implement  a  “throttle”  to  avoid  the 
TiCkS  overwhelming  the  WR  system  if  it  receives 
spurious triggers at a high rate, by requiring a minimum 
time  since  the  start  time  of  a  bunch  before  allowing 
triggers for a new bunch, equivalent to setting maximum 
sustained rate.

Finally, we have noted that the newest version of the 
WR-core  (from  4.0  upwards)  now  includes  SNMP 
monitoring (Simple Network Management Protocol) as a 
standard,  so  that  the  node  performance  can  be  easily 
monitored using standard tools, including the WR node’s 
PLL lock state, Return-Travel Time, TAI value, and many 
other useful parameters.

MEASUREMENT AND TEST

Test-bench Set-up

For  testing  the  time-stamping  and  throughput 
capabilities  of  the  TiCkS  firmware,  as  well  as  the 
operation of the TiCkS board implementation, we use the 
test bench shown in Fig. 2.

Two options were developed on this test-bench for the 
generation of event-trigger pulses:

1. Triggering  from  an  external  pulse  generator  with 
adjustable  frequency,  where  the  “Telescope 
Simulator”  simply  transforms  the  input  to  LVDS, 
adds  SPI  information,  and  fans-out  these  LVDS 
outputs  simultaneously  to  a  CTA-RJ45  mezzanine 
card and thence to the TiCkS board, and in simple 
TTL  (Transistor-Transistor-Logic)  for  the  event 
trigger information only, to an output connected to 
the  SPEC  board  with  its  DIO  (Digital  I/O) 
mezzanine board.

• On  the  “Telescope  Simulator”,  creating  a  random 
trigger  with  Poissonian  distribution  in  time,  with 
programmable average frequency (via the ML507’s 

Dual-Inline  Package  –  DIP  –  switches).  This  was 
implemented using the 20 LSBs of a 32-bit linear-
feedback shift register (LFSR) clocked at 100 MHz, 
so giving a pseudo-random integer each 210 ns. This 
defines the minimum time and minimum interval.  In 
order to simulate the operation of those cameras with 
dead-time, the trigger was sent on the “busy” output 
if  the  time  since  the  last  trigger  was  <380 ns, 
otherwise it was output on the “read-out” line.

• Alignment of the PPS and 10MHz Outputs

We have verified that the alignment between the PPS 
pulse and the 10 MHz clock output from the TiCkS board 
is small and stable over many cold restarts of the TiCkS 
board.  This was achieved by creating a 200 MHz clock 
from the WR 125 MHz clock using a Xilinx PLL, and 
then dividing this clock down to 10 MHz with a simple 
counter, with this counter being started at the first PPS. 
This was taken care of since some cameras may rely on 
this  for  their  internal  timing.   An  example  of  this 
alignment  is  shown  in  Fig.  3,  and  is  measured  to  be 
always below 1 ns.

Maximum Event Rate Tests, and Missing Events

With  the  pulse  generator  input,  and  both  TiCkS and 
SPEC being triggered, we have verified the response to 
fixed-frequency  trigger  inputs,  by  examining  the 
histograms  of  times  of  successive  events  (ΔTintra).   If  a 
trigger is missed in this mode, it can be clearly seen since 
the resulting ΔTintra will be twice the average value.

For  increasing  fixed  trigger  frequencies  input,  we 
measure on samples of a few 108 triggers that there is no 
loss  of  events  up  to  320 kHz,  with  a  slight  loss  at 
400 kHz, and rising losses beyond that rate.

The  corresponding  distributions  of  ΔTintra are  not 
shown,  since  they  mainly  show  the  stability  –  within 
±10 ns – of the pulse generator.

For the random triggers, some such ΔTintra distributions 
are  shown  in  Fig.  4,  and  are  very  well  fitted  by  an 
exponential,  as  expected,  with  no  obvious  features. 
Looking for events which are seen in one card but not the 
other  gives  an  incorrect  estimate  of  the  missed  events 
since they will be correlated between the two cards.

A  better  estimate  simply  identifies  skipped  events, 
since the event counter is incremented even if the time-
stamp  cannot  be  formed  because  of  dead-time  or 
buffering  loss  in  the  time-stamping  mechanism.   This 
fractional  loss  is  0  at  and below 9.5 kHz,  and ~10 per 
million  at  19 kHz  which  can  be  translated  into  an 
equivalent  dead-time  below  1 ns,  which  is  negligible 

Figure 2: Set-up used for testing of the TiCkS board.

Figure  3: Check of the alignment between the PPS (blue 
trace)  and the 10 MHz clock (purple trace)  output from 
the TiCkS board.
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especially as a dead-time (~30 ns) is in any case required 
for a telescope to not re-trigger on the same shower.

Time Stamping Stability Between Boards
For both of the test set-up options described above, we 

examined the distribution of TSs compared between the 
TiCkS and the SPEC (ΔTinter), using a simple coincidence 
window.  This is shown in Fig. 5 for a fixed 10 kHz input 
frequency from the generator,  both with and without an 
additional  62.3 ns  cable  delay.   The  distribution  for  a 
given measurement  is confined to adjacent ns bins, and 
adding the cable delay shifts  ΔTinter as expected. For the 
randomly generated triggers, the distribution is similarly 
well-constrained.

Therefore,  we conclude that  the TiCkS hardware and 
firmware  is well-capable of time-stamping input trigger 
signals with fixed or random time distribution, with little 
or no loss at the rates at which CTA will operate.

CONCLUSIONS

We have developed and tested a TiCkS White Rabbit 
node based on the SPEC, with a scaled-down form factor 
and fewer components, with a firmware with additions to 
the WR core which allow ns-precision time-stamping to 
better than ns WR accuracy for two input channels (“read 
out” and “busy” triggers), the management of event and 
PPS  counters  for  matching  these  time-stamps  with  the 
corresponding event data,  and the transmission of these 
time-stamps, counters, and auxiliary data in a well-packed 
format to a defined address over the WR links.

We have added other functionalities such as SPI input 
for  accompanying  event  types  with  accompanying 
minimum time between events.

We have shown that the TiCkS is capable of handling 
the rates expected for CTA in both fixed-frequency and 
random trigger input tests with negligible or no loss.

We plan to make the TiCkS firmware available both in 
a version which can be used on the TiCkS board with the 
CTA-defined 2xRJ45 connectors with LVDS signals, and 
also in a version which can be used on a SPEC board with 
the DIO mezzanine card, taking simple TTL signals (but 
the latter not including the SPI and Busy functionality).

Together  with  this,  we  plan  to  make  available  the 
hardware  version  of  the  TiCkS  board  with  an  FMC 
connector rather than the 2xRJ45 CTA connectors.

These will soon be placed on the Open Hardware site 
where many other WR projects are hosted (see references) 
– once the reliability analysis has been completed for a 
hardened  design  reaching  the  goal  of  15-year  CTA 
operations between upgrades.

It will be available for the use of the CTA and wider 
communities, for whom such nanosecond time stamping 
in a low-cost, low-power package may be interesting.
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