
TiCkS: A FLEXIBLE WHITE-RABBIT BASED TIME-STAMPING BOARD

C. Champion1, M. Punch‡, R. Oger, S. Colonges, for the CTA Consortium,
APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France,

and Y. Moudden, CEA – Cadarache / DRF / IRFM / STEP / GEAC

Abstract
We have developed the TiCkS board (Time and Clock

Stamping) based on the White Rabbit (WR) SPEC node
(Simple PCIe FMC carrier), to provide ns-precision time-
stamps (TSs) of input signals (e.g., triggers from a
connected device) and transmission of these TSs to a
central collection point.

TiCkS was developed within the specifications of the
Cherenkov Telescope Array (CTA) as one of the
candidate TS nodes, with a small form-factor allowing its
use in any CTA camera.

The essence of this development concerns the firmware
in its Spartan-6 FPGA (Field-Programmable Gate Array),
with the addition of: 1) a ns-precision TDC (Time-to-
Digital Convertor) for the TSs; and 2) a UDP stack (User
Datagram Protocol) to send TSs and auxiliary information
over the WR fibre, and to receive configuration & slow
control commands over the same fibre.

It also provides a PPS (Pulse Per Second) and other
clock signals to the connected device, from which it can
receive auxiliary event-type information over an SPI link
(Serial Peripheral Interface).

A version of TiCkS with an FMC connector (FPGA
Mezzanine Card) will be made available in the WR
OpenHardware repository, so allowing the use of a
mezzanine card with varied formats of input/output
connectors, providing a cheap, flexible, and reliable
solution for ns-precision time-stamping of trigger signals
up to 400 kHz, for use in other experiments.

CTA: CHERENKOV TELESCOPE ARRAY

The Cherenkov Telescope Array (CTA) [1] will be a
gamma-ray observatory in the very-high-energy range
(VHE, above around 30 GeV), consisting of over 100
imaging atmospheric Cherenkov telescopes (IACTs)
distributed over two sites, one in each hemisphere; La
Palma, Spain and the Atacama desert in Chile. The
telescopes detect the few-nanosecond Cherenkov light
flashes from the showers of particles (EAS, Extended Air
Showers) initiated by gamma rays from cosmic sources,
but also those produced by charged cosmic rays, which
are thus background noise.

CTA will use a SoftWare Array Trigger (SWAT) to
detect time coincidences – within a window up to 100 ns
– between the signals from each telescope’s Camera
Trigger Management electronics (CTM). This allows the
rejection of non-coincident images from Night-Sky
Background light or isolated muons, and the “event-
building” for stereoscopic events. Such a SWAT can be
more flexible than a hardware trigger using transmission
of analogue trigger signals and delay lines to correct for
differential delays due to different sky-pointings.

The SWAT needs accurate relative TSs from each
telescope’s CTM, which it can correct in software for the
telescope pointing directions, and identify coincidences
within a flexible coincidence window, with a flexible
topology and coincidence logic.

The White Rabbit (WR) technology has been adopted
by CTA for this time-stamping. The TS relative accuracy
for trigger coincidence identification for event-building is
only at the tens of ns level. But, the timing information in
the “wave-front” of Cherenkov photons hitting the array
may contain further information, though likely redundant
with the imaging information. Nonetheless, since the WR
technology permits this, a 2 ns rms relative accuracy
requirement was adopted CTA’s timing nodes TSs.

WHITE RABBIT TECHNOLOGY

White Rabbit [2] is an Open Hardware and Software
project to provide sub-nanosecond synchronization
accuracy combined with the flexibility and modularity of
real-time Ethernet networks, based on timing
synchronization over mono-mode fibres. It was initiated
by CERN, the GSI Helmholtz Centre for Heavy Ion
Research, and other partners from universities and
industry starting in 2009. It is hoped that White-Rabbit
will become a high-performance standard implementation
of a future revised Precision Time Protocol.

For the purposes of CTA, WR permits to distribute the
time from a central clock system to WR “nodes” in each
telescope camera, over a hierarchical network of WR-
compatible switches located at the array control centre.
The WR-nodes time-stamp trigger signals from CTMs;
both for “read-out” events for which there should be
corresponding image data, and for “busy” triggers for
those cameras which have dead-time (since the overall
trigger pattern is useful at the event-reconstruction level).

Event and PPS counters in the camera’s trigger
electronics and its WR-node allow the image data to be
combined with their time-stamps.

The White-Rabbit network itself may be used to collect
the time-stamps from all telescopes at a central point,
where the trigger coincidence logic can be implemented
in a SoftWare Array Trigger (SWAT), and the
coincidence information forwarded to each camera’s data-
processing pipeline to allow non-coincident trigger image
data to be dropped.

TICKS: TIME & CLOCK STAMPING

We have developed the TiCkS board (Time and Clock
Stamping) based on the WR SPEC node (Simple PCIe
FMC carrier) [3].

The signals which are exchanged with the trigger
electronics of the camera, using LVDS pairs (Low
Voltage Differential Signalling) for transmission, follow
the agreed CTA interface definition:

__

1 email address cedric.champion@apc.univ-paris7.fr
‡ also at Linnaeus University, Växjö, Sweden

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA090

TUPHA090
622

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

• Camera → TiCkS:

○ Read-out Trigger signals

○ Busy Trigger Signals (Optional, only used

for cameras with non-negligible dead-time)

○ (Optional) SPI (Serial Peripheral Interface)

clock, data, and chip-select lines
• TiCkS → Camera

○ PPS signal (Pulse Per Second), synchronized

with the central clock via White Rabbit

○ 10MHz clock, aligned with the PPS (for the

cameras under test for this development,
other cameras may use a different frequency)

○ External trigger signal, where the TiCkS

trigger the camera at a defined TAI time.
This interface suffices to achieve the time-stamping and

timing system monitoring functionality required by CTA.

Hardware

The SPEC node has been modified to reduce the form
factor to 16.4✕6.0✕2.7 cm, removing the unused elements
which are the PCI controller and connector, DDR3
memory, one of the SATA connectors, and – for the
CTA-specific version – also the FMC connector which is
replaced by two RJ45 jacks.

The power circuitry was adapted to allow 24V supply
for the CTA-specific version. This only necessitated a
change in the value of certain capacitors, inductances, and
MOSFET, with the voltage regulator remaining the same.
Thus, either the 12V or 24V supply version can be chosen
when the board is stuffed. A more sturdy power
connector (Buchanan terminal block) is chosen for the 30-
year planned lifetime of CTA, for operation in cameras
which reposition quickly.

The current drawn in operation is 160mA at 24V, so the
power consumption is under 4W. The cost of a small
serial production (~5) is under 500€ per board, including
the SFP module interface to the fibre-optic cable.

Firmware

The firmware of the TiCkS is based on the standard
WR core (v4.0 [4] was used in the tests below).

The WR-core provides a PPS and 125 MHz clock
(referred to as “WR-clock” below) which are
synchronized with the central clock over the fibre and
WR switch link. So, natively, it can time-stamp signals
with 8 ns precision.

To achieve ns-precision time-stamping of the input
trigger signal, we use a 8-bit I/O-SerDes (Input/Output-
SerializerDeserializer) clocked at 1 GHz SDR (Single
Data Rate), where the 1 Ghz is generated by a Xilinx PLL
from the WR 125 MHz clock. This is used as a shift
register, and with some programmable logic resources for
resynchronization purposes. We name this the “fine-
TDC”. The trigger signal from the CTM is fed into this
fine-TDC, and in parallel is sent to the event counter (for
which, the signal must be >20 ns to be counted).

A counter referred to as the “coarse-TDC” is used to
keep track of the ticks of the WR-clock (every 8 ns). This
counter is zeroed by the WR-PPS signal. At each tick of
the WR-clock, the contents of the fine-TDC shift register
are read, the presence of a rising front (reading
MSB→LSB) in the register raises a flag that the fine-
TDC has data, with the front position giving the number
of nanoseconds since the last WR-clock tick. The flag
triggers the read-out of the coarse-TDC counter together
with the WR-provided International Atomic Time (TAI)
seconds value, and a new flag that these data are ready is
raised. These data constitute the full ns-precision TS,
which is stored in a buffer. Finally, the coarse TDC is
incremented whether or not there was a trigger.

On the subsequent tick of the Spartan-6 system clock
(at 62.5 MHz), if there is a flag that the time-stamp is
ready, the LSB (least-significant bit) parts of the data are
put in a FIFO, where these are described in the “Data
format, reception, and control” section below, and is
resynchronized with the 62.5 MHz domain to avoid
metastable states, after which the data-ready flag is
lowered again. The FIFO used is one provided by the
WR-core, with a width of 96-bit words (12 bytes) and a
depth of 40 words (twice the depth of the packets of
events which are sent, see below).

We found that a significant dead-time was introduced
during the read-out of the 96-bit word FIFO to the 16-bit
word UDP stack (6 clock cycles per event). To get
around this, as a “fix” we use a MUX (multiplexer) to
switch between two such FIFOs, in ping-pong mode.

The accompanying SPI data, currently 16-bits of event-
type and related data, is awaited, and added to the word in
the FIFO. The SPI-core used is that from OpenCores [5],
running at 50 MHz, so it should take ~320 ns for the
16 bits of data to arrive from the CTM. Once it is ready,
the SPI data register is added to the word in the FIFO, but
in any case a time-out is implemented currently at 400 ns,
after which the TiCkS allows new triggers to be input for
time-stamping.

Note that this procedure is applied independently for
both the read-out triggers and the busy triggers, with two
instances of all TDCs and counters being implemented for
this purpose.

Once the FIFO has reached 20 events, or after a
predetermined time-out of 200 ms since the previous time
it was emptied, then the full parts of the final TS (LSB
and MSB, Most Significant Bits), and the full contents of
the counters are added as a “tailer”.

The resulting “bunch” of up to 20 events with their
tailer is sent over the WR-fibre and WR-switches link to a
predefined address using the UDP protocol. We use the

Figure 1: Photo of the TiCkS board. The two RJ45
connectors are on the left (“A” being the required timing
connector, and “B” the optional busy and serial interface
connector), with the cage for the SFP module on the right.
The mini-USB connector is on the underside of the board.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA090

Timing and Synchronization
TUPHA090

623

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

UDP stack from OpenCores [6]. The choice of UDP was
made for simplicity and availability, with the
consideration that UDP can reach higher throughput than
TCP or more complex protocols, with faster connection
setup since there is no initial handshake, and achieving
faster packet delivery times, lower latency, and less risk
of overloading the network by re-sending of lost packets
(since UDP drops packets silently). But, there is the
corresponding risk of some packet drop, which is
mitigated by having the WR network on its own VLAN,
and as shown below is negligible at the rates considered
for CTA.

The firmware has the following summary
characteristics, for the Spartan 6 xc6slx45t-3fgg484
target device and version ISE 14.7, it is using 6735 slice
registers (12% of the available resources), and one of the
eight high-speed I/O buffers (BUFPLL), but all four of the
available Phase Locked Loops (PLL_ADVs).

Data Format, Reception, and Control

Data Format: The data format was refined over
several iterations in order to minimize the average event
size. Individual event records contain only the Least
Significant Bits (LSBs) of the different counter and TS
fields, i.e., those which are susceptible to change within a
bunch given its number of events and limit in time due to
the time-out for sending bunches, allowing this event size
to be reduced to 12 bytes. The 20-byte bunch tailer
contains the full information for the counters and fields
for the final event, with which each event can be
unambiguously reconstituted.

If every event contained the full information, then
157 bits would be required (i.e., just under 20 bytes) plus
42 bytes of overhead. Whereas, packing the events in
bunches of 20 gives a reduction of average event size to
15 bytes with overhead, so a reduction of 75%. This may
be important since the WR links are currently at 1 Gbps.

A further advantage of grouping the events in bunches,
is that it is strongly discouraged to have too-small packets
(requiring CPU processing power for reception) or too-
large (with higher probability of loss and fragmentation).
A size of around 500 bytes is usually recommended,
which is close to the 302-byte packets resulting from the
20-event bunches plus tailer, plus other overheads.

For a telescope at a maximum rate of 15 kHz, this gives
a TS and associated data stream of 1.8 Mbps, which must
traverse the 1 Gbps WR link, but at the uplink of the WR
switch, it must share this with the other – up to 17 –
telescopes on that switch. So the maximum rate could be
31 Mbps at that point, or only ~3% occupation (with an
equivalent packet rate below 13000 packets/second).

Note that in a previous version of the WR-switch
firmware (v3.3) the switch started to lose frames at high
link loads, especially at low (~64-byte) payloads (see [7]).
 Though this problem has been resolved in the latest
firmware versions, we consider it nonetheless prudent to
have payloads of reasonable size combined with rates on
the link which are far below 100%.

Data Reception: For the reception of the bunches, we
have implemented a library in “c” which decodes the data
bunches which arrive via UDP and reconstitute the events

individually in a standard c structure, with no packing.
This library can be used by whichever instance is required
to receive the TSs and associated data.

For the tests described below, a process receives the TS
bunch stream and either writes the TS data for later
analysis, or produces a histogram of the distribution of
times between successive events and successive event
numbers. This has been essential for the initial debugging
phase. The test-bench acquisition ran on a rather old PC
with an Intel Core2 Duo Processor E8600.

Testing our decoding library gives that 13 ns are
required for decoding, 34 ns if additionally each event is
added to a histogram, and 583 ns if they are also all saved
to disk. So, even old hardware should be able to treat up
to 1.7 MHz of TS data, which is a factor >4 above the full
CTA Southern array TS rate from all telescopes.

For integration tests with CTA cameras, we have
implemented a process which receives the UDP TS bunch
stream, decodes it into the c-structure per event, and sends
it on over TCP to the Camera event builder. Note that the
downstream links no longer have the WR 1 Gbps limit,
but are rather at 10 Gbps, so there is no need to pack the
events for best performance. This set-up has successfully
operated for the integration tests with partial cameras of
the MST-NectarCam and LST cameras (see [8] for the
common CTM, named the Trigger Interface Board).

Control: The TiCkS board is controlled by sending it
commands using the UDP stack.

For the initial configuration, it obtains its IP address
from a DHCP server which should be available and
configured on the network, otherwise it defaults to a fixed
address. Then, it should be sent the MAC address to
which it should send its bunches, while the corresponding
IP address is computed from the TiCkS’s own IP address
by replacing the final 10 bits with a fixed value, and the
port to which it sends these is a pre-defined fixed value.
With this configuration, the TiCkS can send its bunches to
a designated machine on the network.

Another command permits to send the TiCkS a precise
time in TAI at which it will then emit an “external
trigger” to the CTM. For simplicity of implementation,
always aligned with the 8 ns precision of the WR clock.

Two further commands allow to ensure that the
counters in both the CTM and the TiCkS are reset
simultaneously following a well-defined state machine.
The “reset” command to the TiCkS sets the event and PPS
counters to zero, and maintains them in that state. The
counters in the CTM can then be reset via the camera
control, and the CTM placed in a “get-ready” state in
which it awaits a (false) external trigger from the TiCkS
before re-starting triggering. The “get-ready” command
sent to the TiCkS then will cause it to send an external
trigger just after the succeeding PPS, at which point both
the CTM counters and the TiCkS counters will be
synchronized at zero, and both will go into the “running”
state. However, it should be relatively simple in software
to determine counter offsets at a given time, e.g., after the
PPS, so this procedure may not be required.

In a future version we plan to also add further
commands, such as: to configure the IP address and port
that the TiCkS sends the data; to set the wait time for SPI

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA090

TUPHA090
624

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

between events (or minimum time between triggers); and
to set the time-out after which a non-full bunch is sent.
The current defaults are reasonable for normal operation,
but these changes should be quite easily implemented, as
not affecting the delicate timing logic.

We plan to also implement a “throttle” to avoid the
TiCkS overwhelming the WR system if it receives
spurious triggers at a high rate, by requiring a minimum
time since the start time of a bunch before allowing
triggers for a new bunch, equivalent to setting maximum
sustained rate.

Finally, we have noted that the newest version of the
WR-core (from 4.0 upwards) now includes SNMP
monitoring (Simple Network Management Protocol) as a
standard, so that the node performance can be easily
monitored using standard tools, including the WR node’s
PLL lock state, Return-Travel Time, TAI value, and many
other useful parameters.

MEASUREMENT AND TEST

Test-bench Set-up

For testing the time-stamping and throughput
capabilities of the TiCkS firmware, as well as the
operation of the TiCkS board implementation, we use the
test bench shown in Fig. 2.

Two options were developed on this test-bench for the
generation of event-trigger pulses:

1. Triggering from an external pulse generator with
adjustable frequency, where the “Telescope
Simulator” simply transforms the input to LVDS,
adds SPI information, and fans-out these LVDS
outputs simultaneously to a CTA-RJ45 mezzanine
card and thence to the TiCkS board, and in simple
TTL (Transistor-Transistor-Logic) for the event
trigger information only, to an output connected to
the SPEC board with its DIO (Digital I/O)
mezzanine board.

• On the “Telescope Simulator”, creating a random
trigger with Poissonian distribution in time, with
programmable average frequency (via the ML507’s

Dual-Inline Package – DIP – switches). This was
implemented using the 20 LSBs of a 32-bit linear-
feedback shift register (LFSR) clocked at 100 MHz,
so giving a pseudo-random integer each 210 ns. This
defines the minimum time and minimum interval. In
order to simulate the operation of those cameras with
dead-time, the trigger was sent on the “busy” output
if the time since the last trigger was <380 ns,
otherwise it was output on the “read-out” line.

• Alignment of the PPS and 10MHz Outputs

We have verified that the alignment between the PPS
pulse and the 10 MHz clock output from the TiCkS board
is small and stable over many cold restarts of the TiCkS
board. This was achieved by creating a 200 MHz clock
from the WR 125 MHz clock using a Xilinx PLL, and
then dividing this clock down to 10 MHz with a simple
counter, with this counter being started at the first PPS.
This was taken care of since some cameras may rely on
this for their internal timing. An example of this
alignment is shown in Fig. 3, and is measured to be
always below 1 ns.

Maximum Event Rate Tests, and Missing Events

With the pulse generator input, and both TiCkS and
SPEC being triggered, we have verified the response to
fixed-frequency trigger inputs, by examining the
histograms of times of successive events (ΔTintra). If a
trigger is missed in this mode, it can be clearly seen since
the resulting ΔTintra will be twice the average value.

For increasing fixed trigger frequencies input, we
measure on samples of a few 108 triggers that there is no
loss of events up to 320 kHz, with a slight loss at
400 kHz, and rising losses beyond that rate.

The corresponding distributions of ΔTintra are not
shown, since they mainly show the stability – within
±10 ns – of the pulse generator.

For the random triggers, some such ΔTintra distributions
are shown in Fig. 4, and are very well fitted by an
exponential, as expected, with no obvious features.
Looking for events which are seen in one card but not the
other gives an incorrect estimate of the missed events
since they will be correlated between the two cards.

A better estimate simply identifies skipped events,
since the event counter is incremented even if the time-
stamp cannot be formed because of dead-time or
buffering loss in the time-stamping mechanism. This
fractional loss is 0 at and below 9.5 kHz, and ~10 per
million at 19 kHz which can be translated into an
equivalent dead-time below 1 ns, which is negligible

Figure 2: Set-up used for testing of the TiCkS board.

Figure 3: Check of the alignment between the PPS (blue
trace) and the 10 MHz clock (purple trace) output from
the TiCkS board.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA090

Timing and Synchronization
TUPHA090

625

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

especially as a dead-time (~30 ns) is in any case required
for a telescope to not re-trigger on the same shower.

Time Stamping Stability Between Boards
For both of the test set-up options described above, we

examined the distribution of TSs compared between the
TiCkS and the SPEC (ΔTinter), using a simple coincidence
window. This is shown in Fig. 5 for a fixed 10 kHz input
frequency from the generator, both with and without an
additional 62.3 ns cable delay. The distribution for a
given measurement is confined to adjacent ns bins, and
adding the cable delay shifts ΔTinter as expected. For the
randomly generated triggers, the distribution is similarly
well-constrained.

Therefore, we conclude that the TiCkS hardware and
firmware is well-capable of time-stamping input trigger
signals with fixed or random time distribution, with little
or no loss at the rates at which CTA will operate.

CONCLUSIONS

We have developed and tested a TiCkS White Rabbit
node based on the SPEC, with a scaled-down form factor
and fewer components, with a firmware with additions to
the WR core which allow ns-precision time-stamping to
better than ns WR accuracy for two input channels (“read
out” and “busy” triggers), the management of event and
PPS counters for matching these time-stamps with the
corresponding event data, and the transmission of these
time-stamps, counters, and auxiliary data in a well-packed
format to a defined address over the WR links.

We have added other functionalities such as SPI input
for accompanying event types with accompanying
minimum time between events.

We have shown that the TiCkS is capable of handling
the rates expected for CTA in both fixed-frequency and
random trigger input tests with negligible or no loss.

We plan to make the TiCkS firmware available both in
a version which can be used on the TiCkS board with the
CTA-defined 2xRJ45 connectors with LVDS signals, and
also in a version which can be used on a SPEC board with
the DIO mezzanine card, taking simple TTL signals (but
the latter not including the SPI and Busy functionality).

Together with this, we plan to make available the
hardware version of the TiCkS board with an FMC
connector rather than the 2xRJ45 CTA connectors.

These will soon be placed on the Open Hardware site
where many other WR projects are hosted (see references)
– once the reliability analysis has been completed for a
hardened design reaching the goal of 15-year CTA
operations between upgrades.

It will be available for the use of the CTA and wider
communities, for whom such nanosecond time stamping
in a low-cost, low-power package may be interesting.

ACKNOWLEDGEMENT

Thanks to Julien Houles of the CPPM, Marseilles for
support for the reception software of the TiCkS. This
work was conducted in the context of the CTA
Consortium Array Control Work Package. We gratefully
acknowledge financial support from the agencies and
organizations listed here: http://www.cta-
observatory.org/consortium_acknowledgments .

REFERENCES

[1] CTA, http://cta-observatory.org

[2] White Rabbit Open Hardware site,
https://www.ohwr.org/projects/white-rabbit

[3] SPEC White Rabbit Open Hardware project,
https://www.ohwr.org/projects/spec

[4] WR Core v4.0, https://www.ohwr.org/projects/wr-

cores/Wiki/Wrpc_release-v40

[5] OpenCores SPI Master/Slave Interface,
https://www.opencores.org/project,spi_master_slave

[6] 1G eth UDP / IP Stack,
https://www.opencores.org/project,udp_ip_stack

[7] “Bug: WR Switch crashes under the burst of frames”,
Aug 2015, https://www.ohwr.org/projects/wr-switch-

hdl/work_packages/869/activity

[8] P. Peñil, et al., “A Trigger Interface Board to manage trigger
& timing signals in CTA Large-Sized Telescope and
Medium-Sized Telescope cameras”, in Proc. 35th Int’l
Cosmic Ray Conf. (ICRC2017), Busan, Korea

Figure 4: Time difference between successive injected
events (random with Poisson distribution) for three typical
average frequencies.

Figure 5: Time difference for injected events as measured
by the TiCkS and SPEC WR-nodes. For the second
measurement, a cable with measured transit time of
62.3 ns was added. For the random injected events, the
distribution is similarly restricted to adjacent ns bins.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA090

TUPHA090
626

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

