
CONTROL SYSTEM SIMULATION USING DSEE HIGH LEVEL
INSTRUMENT INTERFACE AND BEHAVIOURAL DESCRIPTION∗

A. J. T. Ramaila† , K. Madisa, N. Marais, SKA SA, Cape Town, South Africa
A.M. Banerjee, S.R. Chaudhuri, P. Patwari, TCS Research and Innovation, Pune, India

Y. Gupta, NCRA, Pune, India

Abstract
Development of Karoo Array Telescope Control Proto-

col (KATCP) based control systems for the KAT-7 and
MeerKAT radio telescopes proved the value of a fully simu-
lated telescope system. Control interface simulators of all
telescope subsystems were developed or sourced from the
subsystems. SKA SA created libraries to ease creation of
simulated KATCP devices. The planned SKA radio tele-
scope chose the TANGO controls framework. To benefit
from simulation-driven development tango-simlib, an OSS
Python library for data-driven development of TANGO de-
vice simulators, is presented. Interface simulation with
attributes only requires a POGO XMI file; more complex
behaviour requires a simple JSON SIMDD (Simulator De-
scription Datafile). Arbitrary behaviour is implemented
selectively using Python code. A simulation-control inter-
face for back-channel manipulation of the simulator for
e.g. failure conditions is also generated. For the SKA Tele-
scope Manager system an Eclipse DSEE (Domain Specific
Engineering Environment) capturing the behaviour and in-
terfaces of all telescope subsystems is being developed. The
DSEE produces tango-simlib SIMDD files, ensuring that
the generated simulators match their formal specification.

INTRODUCTION
The current MeerKAT Control And Monitoring (CAM)

system is developed against a fully simulated telescope sys-
tem. In development environments, all the subsystems that
would make up the real telescope are simulated at the level
of their KATCP interfaces. KATCP is a communications
protocol based on top of the TCP/IP (Transfer Control Pro-
tocol/Internet Protocol) layer. It is a syntax specification
for controlling devices over a TCP link. The full, actual,
MeerKAT CAM is run against the simulated devices, thus
CAM functionality to be tested without the need of real
telescope hardware. This is exploited by CAM developers
in their own development environments and also allows
automated functional integration tests to be run daily.

The testing of SKA Telescope Manager (TM) will be
started in the absence of other Elements since not all of
them will be available when TM is ready to be tested, it
would be beneficial to have a mechanism that allows TM
testing without depending on other element’s Local Moni-
toring and Controls (LMCs). A useful tool for developing
an evolutionary TM prototype is a data-driven TANGO sim-
ulation framework that is used to develop Element LMC
∗ Work supported by NRF.
† aramaila@ska.ac.za

simulators that can be used in the TM test environment. The
goal is to develop a simulation framework for Element LMC
Simulators that can be used in the TM test environment.
Furthermore, the TM interface to LMCs can itself can be
simulated using this framework. The simulation framework
was presented to Element Consortia to keep them abreast of
developments in this respect. Element Consortia are being
encouraged to make use of the Simulation Framework to
develop LMC Simulators where required. The following
risk reductions have been identified:

• Risk reduction for early Assembly Integration and Verifi-
cation (AIV) support;

• Risk reduction for TM product development, by provid-
ing early LMC simulators;

• Risk reduction for Element development by producing
LMC Simulator Framework to aid them in the devel-
opment of element simulators;

• Risk reduction by producing an early scriptable TM Sim-
ulator that can aid Element LMC development and
integration efforts.

The early AIV integration would demand complete develop-
ment of some components. Unavailability of hardware or
incomplete development of element can be a hurdle for such
AIV integration. The simulation framework reduces such
risk by generating simulators that could be used in place of
LMC’s which are not fully developed or unavailable due
to hardware dependencies. The test framework provides
an approach to create test cases and points out areas where
it can reduce manual effort in writing test cases through
some amount of automation. It was shown that a basic LMC
simulator can be produced using the information provided
by the Element LMC Interface Control Document (ICD)
through the simulation data-description file. The approach
also enhanced our understanding of how domain specific
simulators can be integrated into the testing and simulation
framework as and when they become available. The simula-
tion framework demonstrates how this risk can be mitigated
for the TM product development by auto generating the
simulators for the LMC’s to a great extent based on the Self
Description-Data (SDD) data that captures the information
typically captured using ICD’s in a structured and machine
processable manner. Initially this was an exploratory proto-
type with the aim to develop it further into an evolutionary
prototype during 2017 in the period towards Critical Design
Review [1].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

TUDPL03
292

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



APPROACH AND STRATEGY
As TANGO has been selected as the LMC common frame-

work this prototype can be developed using TANGO while
incorporating concepts from the MeerKAT fully simulated
framework as used in the MeerKAT CAM development
and qualification. The usage of simulators during the de-
velopment of MeerKAT telescope proved useful. Hence
the aim was to enable the reuse of the same simulators
for TANGO based environment. Based on this idea, a
generic TANGO simulator open source library [2] was im-
plemented in the Python language. The simulation library
(simlib) eases the development of simulators exposing a
desired TANGO interface. The initial step explored the
technological feasibility of implementing a development
environment which is aligned with the proposed Telescope
Management (TELMGT) design. Using a Domain Specific
Language (DSL) to generate the SDD was explored by the
TCS-R&I team showcasing the use of aDSL developed us-
ing the Model Driven Engineering (MDE) methodology,
implemented as an Eclipse Plugin. The DSL enabled cap-
turing SDD information that was proposed in the TELMGT
design. The first version of the SDD template to capture the
self-description data was released as a part of LMC Inter-
face Guideline (LIG) document by the TELMGT team. In
this phase the DSL was used and compared against the SKA
schema to see if there was any problem generating an in-
stance of the template using the DSL. The prototyping plan
identified the following iterations for the LMC Interface
Simulator Framework prototype:

• Iteration 1 - First demonstration with MeerKAT frame-
work using Tango simulator(s) and TANGO -> KATCP
translators;

• Iteration 2 - Evaluation of TANGO tool capabilities in
the context of a MeerKAT-like radio telescope;

• Iteration 3 - Improved Simulators, including behaviour
extension;

• Iteration 4 - Demonstration of the exploratory LMC Sim-
ulation.

The main focus of the initial iteration was on: training
and familiarisation with the TANGO framework; imple-
menting simple TANGO based simulators (i.e. simulated
"devices" exposing TANGO interfaces; and investigating
how TANGO devices may be incorporated in the exist-
ing, fully functional KATCP based MeerKAT Control and
Monitoring (CAM) environment. The MeerKAT CAM per-
forms a function equivalent to the SKA Telescope Man-
ager for MeerKAT. The main focus of the second iteration
was on investigating Tango tool capabilities in the context
of a real telescope (MeerKAT) TM system; progress to-
wards data-driven TANGO device simulators with richer
behaviour; making simlib more dynamic; investigating
the Eclipse based Domain Specific Engineering Environ-
ment prototype (DSEE) as a source of data for data-driven

simulators; and translating between KATCP and TANGO
devices and clients. The primary use case was to allow
the use/evaluation of TANGO tools alongside the existing
KATCP based MeerKAT CAM. Another future application
could be interfacing KATCP devices (potentially MeerKAT
subsystems) to a TANGO based TM.

TOOLS
Since we were a distributed collaboration team based

out of South Africa and India various tools were used to
facilitate the development of the Control System Simula-
tion Framework, such JIRA© for issue tracking and project
management and Google Drive© and WEBEX web confer-
encing for association purposes. GitHub© is mainly used
as version control of project code repository.

PROJECT OUTPUT

First Demonstration with MeerKAT Framework
using Tango Simulators

During the initial stage, simple TANGO based simulators
were implemented, and we investigated how those device
simulator can actually be incorporated in the existing, fully
functional KATCP based MeerKAT CAM environment. As
a proof of concept, a weather device simulator was imple-
mented, i.e., Fig. 1. This simulator was configured to match
the functionality of the existing MeerKAT weather station.
Each TANGO attribute of the simulated weather station
is backed by a simlib simulated quantity. Only the data
parameters need to be specified; simlib automatically cre-
ates a simulated TANGO attribute that varies according to
the specified data. During phase 1, slew-limited Gaussian
random variable quantities and constant quantities are sup-
ported. Simulation parameters (e.g. min/max/mean) can be
specified, as can the metadata (e.g. TANGO attribute label,
description text, unit) that is used to configure the TANGO
attribute backed by the simulated quantity. Each simulator
created with simlib creates two TANGO interfaces. The
simulated device interface [Fig. 1] mimics the TANGO
interface that a real device would have presented to the TM.
The simulation control interface [Fig. 2] is used to control
the behaviour of the simulator. It can be used to change sim-
ulation parameters and values in real time. It could e.g. be
used to simulate an error condition to test the TM’s reaction.
The ATKPanel view of the two TANGO interfaces of the
weather simulator is presented [Fig. 1 & 2]. To demonstrate
the effect of the simulation control interface, the wind speed
is simulated with the default values that were entered in the
simulator code. Around 17:33:30 the standard deviation of
the simulated wind speed quantity was reduced [Fig. 3]. At
around 17:36:30 the simulation was paused [Fig. 3]. At
around 17:37:30 the simulation was resumed [Fig. 3]. As
another proof of concept, an existing advanced MeerKAT
simulator was adapted to present a TANGO interface rather
than a KATCP interface. The MeerKAT Antenna Positioner
(AP) simulator presents the same KATCP interface as the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

Software Technology Evolution
TUDPL03

293

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: A TANGO implemented weather device simulator.

Figure 2: Simulation control interface with adjusted std_dev
and paused simulation.

Figure 3: Simulated wind speed response to control inter-
face updates.

actual hardware AP as delivered by the antenna motion
control subcontractor. A TANGO based simulator was cre-
ated by using the original AP simulator model class un-
changed, and implementing a TANGO interface class to re-
place the KATCP interface class as the view and controller.
For each TANGO device that needs to be incorporated a
translator instance is created [Fig. 4]. The translators are
generic, and have no precoded idea of the TANGO device it
is translating. Each translator connects to its TANGO device
as a client and inspects the device for TANGO commands
and attributes and exposes them over a KATCP server inter-
face as KATCP requests (TANGO commands) and sensors
(TANGO attributes).

Figure 4: KATCP based TM controlling TANGO devices.

Evaluation of TANGO Tool Capabilities in the
Context of a MeerKAT-like Radio Telescope

The main focus of this iteration was investigating
TANGO tool capabilities in the context of a real telescope
(MeerKAT) TM system. We also wanted to explore the
usage of DSEE so that much of the simulation require-
ments could be specified using DSL’s rather than having to
hardcode them using programming languages. The DSEE
provides a DSL for specifying the details of a system that
needs to be simulated through a controller. From the speci-
fied description, it provides capability to derive the TANGO
implementation of the same. It further allows to refine the
input with specific details about the types of simulation
needed e.g. algorithm to be used with parameters. Based
on this the DSEE configures tango-simlib library as neces-
sary. Using the KATCP device to TANGO translator [3] to
expose MeerKAT devices as TANGO devices, the TANGO
HDB++ [4] and PANIC [5] tools were evaluated. We lever-
age Python’s dynamic language features to allow the simu-
lator to be defined by an input data file, while providing a
mechanism for behavioural extension using external Python
code. In support of this approach, the generic simulator li-
brary described in TANGO Simulator devices is extended to
be more dynamic with an eye on data driven simulator gen-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

TUDPL03
294

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



eration. The data derived from a device description (such
as the DSEE DSL) or simulator description data, should
have been derived from a device’s ICD in the first place. For
this reason, it could be useful to testing device simulators,
and potentially also comparing real devices to their ICDs.
In light of this use case, the test generation mechanism
currently implemented in the DSEE have been evaluated
[6].

Improved Simulators, including Behaviour Exten-
sion

Here we mainly focused on updating the simulator li-
brary to allow the creation of functional, fully data-driven
TANGO device simulators without having to code. The
updated simlib component was released as an open source
package on github [2]. Support for model actions that back
TANGO commands have been introduced. By default a do-
nothing action is generated that simply produces a success-
ful return value, but support for model state manipulation
and Python code-based action overrides are supported and
are described below. Thus a useful basic device simula-
tor can be created using only the TANGO POGO interface
generation tool. The XMI file generated by POGO is inter-
preted at runtime, and used to dynamically set up a simlib
device model. TANGO attributes defined in the XMI file
are mapped to model quantities like those demonstrated in
the first stage of the project, but without the need to write
code. TANGO commands defined in the XMI are mapped
to default no-op model actions. These simulators expose the
same functionality as described in Iteration 1, including the
simulation control interface. A provisional Simulated De-
vice Description (SIMDD) format was introduced to allow
more complicated data-driven simulators to be generated.
This is a fairly simple JSON based format. The SIMDD can
be used to specify attribute quantity simulation types and
parameters. Table 1 shows a SIMDD code snippet example
for specifying attribute simulation parameters. Moreover
extended TANGO device command action simulations were
implemented; the behaviour of the default command actions
can be modified using the SIMDD as shown in Table 2;
SIMDD example snippet for specifying command simula-
tion. The aim is not to support arbitrarily complex command
behaviour through the SIMDD (see command simulation
overrides below, Table 3), but to allow the most common,
relatively simple command behaviours to be specified via
the SIMDD. Current SIMDD specification allows command
input parameters to be transformed (currently “copy” is the
only transform, but mathematical and other basic operation
could be added) and stored to a named temporary variable.
These temporary variables can be used to define side effects
that update attribute simulation quantities in the simulation
model. Furthermore the command can return either a tem-
porary variable or a model quantity. Custom action handler
overrides can be coded in Python (APPENDIX). The over-
ride class is specified as shown in Table 4; SIMDD snippet
for specifying a command action override class.

Demonstration of the Exploratory LMC Simula-
tion

The main focus of this iteration was to utilize tango-
simlib in an SKA-mid representative LMC configuration
and to implement interoperation between the DSEE and
tango-simlib. To explore the concept of using tango-simlib
to generate LMC interface simulators for SKA telescope ele-
ments, a simulator was generated for the LMC interface of a
real SKA telescope element. The DSH element was chosen
for this exercise since we have easily obtained the developed
LMC ICD of the element at the time of writing. Since the
first DSH prototype is to be qualified using MeerKAT in
the near future, it would also be beneficial to have a DSH
simulator allow integration with the MeerKAT TM system
before the physical DSH hardware is on site. The existing
DSH ICD was analysed to generate a basic device interface
using the TANGO POGO tool. The .xmi file generated by
POGO was then passed to tango-simlib to generate the basic
simulator functionality. The MeerKAT AP simulator code
was ported to use the tango-simlib override class API in
order to extend the basic tango-simlib simulator to provide
more detailed physical modeling of a moving DSH. To in-
corporate the DSH simulator in the MeerKAT system, the
TANGO <-> KATCP translator [3] developed during earlier
iterations was used. Since the DSEE device DSL already
captures much of the information that would be needed
to generate a device simulator, the approach of generating
tango-simlib input files for a device described using the DSL
was investigated. In principle this would allow a simulator
to be derived from the same description as a real device,
ensuring consistency between the two. The DSEE DSL de-
scribes a device at a somewhat abstract level, and does not
include simulation specific information such as the expected
statistical parameters of simulated attributes. To address
this, the original DSL is enriched with two additional DSL
layers [6], viz. the Pogo DSL and the Tango SimLib DSL,
Fig. 5. The Pogo DSL layer adds TANGO-specific meta-
data that can refine the TANGO representation generated
from the Monitoring and Control Modelling Language. The
Pogo DSL layer is applicable both to the real device and
to a simulated representation, ensuring that both have the
same TANGO interface. The Tango SimLib DSL adds ex-
tra simulation parameters, such as statistical parameters for
simulated attributes and expected behaviour of simulated
commands. This information can be exported in the tango-
simlib SIMDD format, allowing a simulator to be created
without having to write any extra code. Regarding the Do-
main Specific Engineering Environment prototype (DSEE)
for driving simulator data generation and test generation:
The approach was found to have some promise, but the
DSEE in its current form could not be used for e.g. testing
an actual TANGO device against its ICD. After feedback
was provided to the DSEE developers, it was extended to
support the generation of tango-simlib simulator data files.
This would allow both a real device and a simulated device
to be generated from the same DSL description.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

Software Technology Evolution
TUDPL03

295

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Table 1: SIMDD for Attribute Simulation Parameters

"dynamicAttributes": [

{

"basicAttributeData": {

"name": "an attribute",

// Other “standard” attribute parameters that

// can also be specified in the XMI file has

// been removed for brevity

"dataSimulationParameters": {

"gaussianSlewLimited": {

"min_bound": "minimum bound for randomly

varied simulator quantity",

"max_bound": "maximum bound for randomly

varied simulator quantity",

"mean": "mean value",

"max_slew_rate": "maximum slew rate",

"update_period": "update period"}

} } },

]

Table 2: SIMDD for Command Simulation Behaviour

"basicCommandData": {

"name": "command name",

"description": "command description",

"actions": [{

// Transform the command input value and store it

in a named

// simulation temporary variable (scope is the

command handler)

"behaviour": "input_transform",

// Name of a temporary variable to store the

transformed value into

"destination_variable": "temporary_variable_name"

},

// Side effects

{

"behaviour": "side_effect",

// Temporary variable that provides side

effect data

"source_variable": "temporary_variable"

// Model quantity that is updated

"destination_quantity": "temperature"

}

// Output return values

{

"behaviour": "output_return",

// either a temporary variable

"source_variable": "temporary_variable"

// or a model quantity, but not both, only one of

source_variable or

// source_quantity may be specified.

"source_quantity": "model_quantity_name"

}

]}

Table 3: SIMDD for a Command Action in Override Class

"override_class": {

"name": "unique_override_identifier",

// "module_directory": "Locate the override module

in this directory”,

"module_name": "mkat.simulators.weather_sim"

"class_name": "WeatherActionOverrides"

}

Figure 5: Using DSEE to generate tango-simlib data files.

CONCLUSION
This exercise has shown that KATCP and TANGO based

devices are similar enough in principle that the concept of
translators could be utilised when integrating MeerKAT into
SKA Mid Phase 1. The development of a generic, data-
driven TANGO simulator generation library has progressed
well and can now be used to create moderately complex
simulators with TANGO interfaces without having to write
any code. This current functionality should be sufficient
to develop a basic simulated SKA telescope environment
against which TM could be developed. This was proven
by implementing an early DSH LMC simulator and inte-
grating it with MeerKAT TM using a TANGO <-> KATCP
simulator to support software integration of the SKA Dish
element (DSH) prototype into MeerKAT before the physical
prototype arrives on site.

ACKNOWLEDGEMENT
We would like to acknowledge the National Research

Foundation (NRF) and Department of Science and
Technology (DST), India, for funding the project. And
we gratefully thank the SKA TM Consortium partners
responsible for the development of the TM, namely NCRA
(India), SKA SA (South Africa), and TCS Research and
Innovation (India).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

TUDPL03
296

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



APPENDIX
An override class example is shown:

Table 4: Simulation Command Action Override Class

class WeatherActionOverrides(object):

"""An example of the override class for the TANGO device

class ’Weather’. It provides implementations of the

command handler functions for the commands specified

in the POGO generated XMI data description file.

"""

def action_stoprainfall(self, model, tango_dev=None,

data_input=None):

"""Totally sets the simulated quantity rainfall to a

constant value of zero.

"""

try:

quant_rainfall = model.sim_quantities[’rainfall’]

except KeyError:

MODULE_LOGGER.debug("Quantity rainfall not in "

"the model")

else:

quant_rainfall.max_bound = 0.0

REFERENCES
[1] V. Mohile, SKA1 TM Prototyping Plan, Apr. 2017, unpub-

lished.

[2] tango-simlib,
https://github.com/ska-sa/tango-simlib

[3] K. Madisa, L. van den Heever, N. Marais and A. J. T. Ramaila,
“Integration of MeerKAT and SKA Telescopes using The
KATCP/TANGO Translators”, presented at ICALEPCS’17,
Barcelona, Spain, Oct. 2017, paper THSH201, this confer-
ence.

[4] Tango Evaluation: HDB++,
https://docs.google.com/document/d/
1qgpn54w3Igs-lmFWsv2Nusuo3NTcfclAM-3Q17yXeYQ/
edit#heading=h.h722b3a2ksep

[5] Tango Evaluation: PANIC,
https://docs.google.com/document/d/
1X3UB5-zLQKBnWjJ-WEQnXyaW-ggtgPz0I8fAGZraZII/
edit#heading=h.hhg6djgg60h8

[6] DSL: DSEE,
https://gitlab.com/patwari.puneet.ska/MAC-SEEN

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL03

Software Technology Evolution
TUDPL03

297

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


