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Abstract 
Originally conceived at ESRF and first deployed in 

2005 MXCuBE, Macromolecular Xtallography 
Customized Beamline Environment, has with its 
successor MXCuBE2, become a successful international 
collaboration. The aim of the collaboration is to develop a 
beamline control application for macromolecular 
crystallography (MX) that are independent of underlying 
instrument control software and thus deployable at the 
MX beamlines of any synchrotron source.  The continued 
evolution of the functionality offered at MX beamlines is 
to a large extent facilitated by active software 
development. New demands and advances in technology 
have led to the development of a new version of 
MXCuBE, MXCuBE3, The design of which was inspired 
by the results of a technical pre-study and user survey. 
MXCuBE3 takes advantage of the recent development in 
web technologies such as React and Redux to create an 
intuitive and user friendly application. The access to the 
application from any web browser further simplifies the 
operation and natively facilitates the execution of remote 
experiments. 

INTRODUCTION 
MXCuBE is a control software developed for 

Macromolecular Crystallography beamlines. Since its 
first version, deployed in 2005 at The European 
Synchrotron (ESRF), MXCuBE has continuously evolved 
to facilitate user experiments by hiding the complexity of 
the beamline hardware and low-level control 
environment. In 2013 MXCuBE2 succeeded the original 
version and became the core of an international 
collaboration. MXCuBE2 was completely redesigned to 
permit the operation of new hardware, with particular 
relevance given to sample changer robots and new 
generation X-ray detectors. The development further 
enabled the automation of MX beamlines and maximised 
sample throughput [1]. Since then, the constant evolution 
of MX data collection methods and the increasing 
popularity of remote data collection, created new 
demands on the control and acquisition software, that 
converged into a new graphical user interface. This paper 
presents the architecture, preliminary usage feedback, and 
experiences learned from the development of the next 
version of MXCuBE, version 3. MXCuBE3 takes 
advantage of the recent development in web technologies 
such as ECMAScript 6 (ES6), React and Redux which the 
authors believe provides an environment suitable for 
implementing a complex web application such as 
MXCuBE3. 

ORGANIZATION 
The MXCuBE collaboration currently consist of eight 

institutes (ESRF, Soleil, MAX IV, HZB, EMBL, Global 
Phasing Ltd., DESY and ALBA) actively developing the 
software. A few further institutes are currently 
considering becoming full members of the collaboration. 
Developers and scientists meet in joint scientific and 
development workshops twice every year to share their 
respective progress and agree on the future goals of the 
collaboration. The collaboration enhances and speeds up 
the development of MXCuBE, many sites share similar 
needs and instruments and can thus quickly adapt to 
already existing solutions. Users of all MXCuBE sites are 
further presented with a familiar user interface, which 
decreases the learning curve and increases the portability 
of experiments across the different facilities. 

 
A Memorandum of Understanding (MoU) has been 

signed by the partners in the collaboration. The 
collaboration comprises steering-, scientific- and a 
developer's committees. The development of MXCuBE3 
was promoted and supported by the collaboration, 
however the development and deployment effort for 
MXCuBE3 is being jointly made by ESRF and MAX IV. 
Development started in September 2015 with a 
comprehensive roadmap and specific goals established 
during an initial meeting. The project uses an agile, scrum 
like, process. Planning meetings are held every two weeks 
and development workshops every three months. The 
project is available on GitHub [2]. 

BACKGROUND 
MXCuBE 2 has become the leading software used to 

collect data for MX-experiments at European 
synchrotrons [3]. As the MXCuBE project is an 
international collaboration and the software is used on 
different sites across the world, the aim of the project is to 
provide user friendly software which is easy to adapt to 
various control systems and hardware environments. 
 

The evolution of MX beamlines, the increase in sample 
throughput and the introduction of new collection 
procedures, have introduced new demands on the 
software [4-7]. The application and its interface have 
grown increasingly more complex to be able to handle the 
new requirements, as a side effect decreasing usability of 
the application [8]. At the same time key software 
libraries used in the User Interface (UI) are getting 
outdated and difficult to maintain. Efforts to update these 
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key libraries have been made and a version of MXCuBE 
with more recent UI libraries is available [9]. However 
the main issue of keeping pace with these software 
libraries and maintaining the environment on which they 
run remain. As software technology evolve new libraries 
and methods for developing UIs have emerged that the 
authors believe could alleviate some of these issues. 

 
The MXCuBE community have during this time 

therefore been discussing the requirements of, version 3 
of MXCuBE. The ESRF Structural Biology group 
surveyed the user community to get their opinion on  
features they would like to improve or add. This was used 
to define the key features of MXCuBE3: 
 

● Facilitating maintenance and installation of both 
client and server 

● Support for new sample changers and larger sample 
quantities 

● Improve the integration with LIMS database like 
ISPyB 

● Enhancing the possibility of integration with third 
party data collection strategy calculation software 

● Improve overall user experience, using a more recent 
user interface design 

● A scalable interface that adapts better to available 
screen sizes 

● Improve remote access performance 
 

MXCuBE3 as a Web Application 
Web application technologies have matured as 

streaming services for video and audio such as, Netflix, 
Spotify and Deezer have become increasingly popular. 
Companies like Facebook and Google have introduced 
libraries for frontend development like React and 
AngluarJS that further facilitate the transition to a web 
based environment. 

 
One of the major advantages with web applications and 
perhaps the reason for the popularity of the services 
mentioned above is the ease of access. A web application 
can easily be accessed from almost any computer or 
mobile device without any additional software installation 
required. Bringing MXCuBE to the web facilitates 
seamless integration with already existing web based 
services like the LIMS system ISPyB. A key feature of 
MXCuBE is the feature, where a user logs in and 
performs an experiment remotely. Staff or other users can, 
depending on their access rights, login to the beamline but 
only to observe what is being done or communicate, via a 
chat mechanism, with the user in control. Implementing 
MXCuBE as a web application enables the remote access 
feature of MXCuBE almost by design. MXCuBE3 can 
simply be rendered in a browser with native elements 
directly on the client,  whereas other means of remote 
access have to rely on specific remote access applications 
and compression schemas (i.e. NX-Client) [10]. The 

authors believe that this will greatly improve performance 
and ease of access to the application. 

 

BACKEND 
The backend of MXCuBE has been divided into two 

layers, beamline control and web service. The beamline 
control layer provides access to beamline instrumentation 
and procedures via HardwareObjects (HO) [11-12]. 
MXCuBE2 already introduced a clear separation between 
user interface and beamline control, following MVC 
design pattern principles. As for MXCuBE2, in 
MXCuBE3 the beamline control layer is implemented by 
Hardware Objects. In order to speed up development by 
reducing regression and facilitate testing, the same 
version of HO is used as in MXCuBE2. The Web service 
layer implements a REST API to the beamline control 
layer that is used by the client to perform the various 
operations requested by the user. 
 

Beamline Control Layer 
The beamline control layer consists of a set of 

Hardware Objects which implement a device or 
procedure. Hardware Objects are Python classes 
configured by an eXtensible Markup Language (XML) 
configuration file. Each configuration file contains the 
information necessary to initialize the corresponding 
Hardware Object. The Hardware Objects provide access 
to beamline instrumentation through the beamline control 
system and implement the higher-level operations 
required by MXCuBE. The beamline control layer 
provides an abstraction for control systems such as SPEC, 
EPICS, TINE, TANGO and Sardana, Hardware Objects 
are in this way control system agnostic.  

 
Hardware Objects support composition, to represent 

more complex entities of hardware. In this case, the 
configuration XML file defines references between 
objects. A referenced Hardware Object is associated with 
a “role”, which is used to access the corresponding 
instance.  Hardware Objects are singleton objects thus 
only one instance of each Hardware Object is instantiated 
at the time, and this instance is shared across the entire 
application. 

 
To create a common instrument and procedure API 

which permits cross site adaption, each Hardware Object 
inherits an abstract base class that describe the particular 
instrument or procedure. The model is flexible enough to 
be able to adapt to the hardware and beamline 
specificities of different synchrotron sites with little 
effort. There are currently over 20 base classes defined in 
the beamline control layer. 
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Web Service Layer 
The REST service layer, developed in python, provides 

an API for the clients to the underlying beamline control 
layer through REST-full web services. These services are 
implemented on top of Flask, a Web Server Gateway 
Interface (WSGI) compatible micro web framework. The 
Flask framework contains the Werkzeug development 
web server which is provided as the default server for 
MXCuBE3. However, the application can also be 
deployed on a WSGI compatible container including 
Green Unicorn, uWSGI or Apache mod_wsgi. A thin 
utility layer is used to facilitate the access to the beamline 
control layer and adds features that are new and 
exclusively used in MXCuBE3 (see Figure 1).  

 
The main role of the web service layer is to receive 

calls and relay them to either the client or the beamline 
control layer it’s thus primarily handling IO operations. 
Considering the IO intensive nature of MXCuBE3 and 
python's global interpreter lock (GIL), the authors have 
chosen to use coroutines, provided by Gevent, instead of 
threads to handle concurrency. Gevent is a coroutine-
based networking library that uses greenlet to provide a 
high-level API on top of the libev event loop.  

 
In MXCuBE3, a bidirectional event broker based on 

SocketIO was implemented to be able to send 
asynchronous events from and to the client. SocketIO 
provides a bidirectional communications channel capable 
of, if needed, degrading to the protocols available on the 
connected clients. A special version of Flask, called 
Flask-SocketIO is used to enable native support for 
SocketIO within the web framework. A session is used to 
keep track of information related to a particular user, this 
session is kept in a Redis data structure store. The Redis 
data structure is written to disk and can be restored in case  

of a server fault. 

 
Figure 1: Application architectural overview, with 
beamline control layer, web service layer and client. 

FRONT END 
The user interface is written in Javascript, HTML5 and 

CSS. Javascript provides single threaded event driven 
programming model which is well suited for UI 
development [13]. Javascript is an implementation of the 
ECMAscript standard. Recent versions of ECMAScript 
have introduced constructs more suitable for writing 
complex applications than earlier versions. Most notably 

classes and modules was introduced in ES6, released in 
2015, the most recent version is ECMAScript 8 (released 
in 2017). However the different versions of ECMAscript 
are supported to varying degree in each browser, browser 
support for ES6 is still incomplete. ES6 code can be 
translated, “transpiled”, into ECMAScript 5 code which 
has more consistent support across browsers. A software 
called Babel is used to perform the translation. 

 
The browser itself does not have a concept of modules 

or dependencies, so a build tool called webpack is used to 
package, "bundle", the various files into code that the 
browser can execute. Webpack handles the various project 
assets including Javascript, images, fonts, and CSS via 
loader plugins. The code is bundled and further 
optimized, “minified” and a set of static files are 
produced (see Figure 2). Using Babel (ES6) and Webpack 
makes it possible to define and use components and 
modules via the export and import statements. 
 

Webpack, Babel and various other third party libraries 
used for the build process require a Javascript runtime. 
Node.js is used to provide the runtime for build and 
development environment. Node.js also provides a 
package manager npm (node package manager) with very 
large repository of third party libraries. 
 

 
Figure 2: User interface build steps. 

 
A library for user interface development called React 

provides means to create reusable user interface 
components. The components enable encapsulation of 
interaction logic and display similar to widgets in user 
interface frameworks for desktop applications. The user 
interface can be expressed in a HTML like syntax called 
JSX (JavaScript XML) where react components and 
HTML element can be included as tags. React optimises 
the rendering of the application and provides component 
life cycle for each component via a Virtual-DOM. The 
browser events are replaced with synthetic events within 
the Virtual DOM which is used to keep track of 
components that have changed internal state. Batch 
updates of all components are performed and a minimal 
set of changes to apply to the original DOM is calculated. 
This is done to minimise the number of repaint operations 
that are required to update the user interface. 

 
In many user interface frameworks including React the 

state of a component is often contained within a data 
structure tightly coupled to the component itself. This 
means that the state of the application is distributed over 
the application and can become difficult to extend and 
debug. React can be used together with a state 
management library such as Redux to solve this 
limitation. Redux makes the state mutations more 
predictable by defining an application wide state, referred 
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to as a store, and imposing certain restrictions on how the 
store is updated. The Redux store is an immutable data 
structure and can only be updated by dispatching an 
action that describes the state transfer. The state 
transformation is defined by a pure function called a 
reducer that takes the current state and the action as 
parameters and returns the new state. The components 
listen for changes to the store and are updated 
accordingly. The user interface is composed by several of 
these reusable React components that reflect the changes 
made to the underlying Redux store.  

 

Enabling Remote Access Experiments 
In a Remote Access experiment at a synchrotron source 

a beamline user carries out an experiment from a different 
location i.e from the user’s home laboratory. The samples 
are stored in the beamline sample automounter by 
synchrotron staff, and the remote users have control of the 
endstation once the experiment hutch is interlocked.  
 

Remote Access experiment presents some challenges to 
the beamline control software: 
 

● how to manage a remote user’s access control 
● how to communicate with the remote user 
● how to follow what a remote user is doing 
● how to help remote user in case of problems 
● how to take back control over remote user in case of 

emergency 
● how to ensure acceptable real time performance 

(latency, real-time video and information messages) 
 

One of the main drivers for MXCuBE3 as a web 
application was the need for an improved remote access 
functionality. The main points of improvement from 
previous versions of MXCuBE are: 
 

● A user is not required to install additional software 
(i.e. NoMachine NX client or similar) to  connect to 
the synchrotron computing system 

● Improved real time performance, responsiveness of 
the user interface and video streaming frame rate. 

● User action monitoring to enable remote assistance 
 

As a web application, MXCuBE3 inherently supports 
multiple clients without requiring the installation of any 
software apart from a recent web browser on the client 
side. The UI elements can be directly rendered in the 
browser decreasing the amount of information that needs 
to be transferred. Particular effort has been put into the 
sample video streaming and MXCuBE3 offers the 
possibility to stream the beamline camera video as 
MPEG1. Users may need to select different parts of their 
samples for data collection, requiring a lot of interaction 
with the video stream. Improving the video streaming will 
therefore have a big positive impact on remote access 
experiment performance. 
 

During remote access to the beamline control system 
the first user that logs into the application with a user 
account that currently has the right to the beamline 
becomes what is referred to as a Master. The Master user 
is the only user that can work on the beamline. Master 
users have the possibility to grant subsequent logins from 
the same account to observe what is currently being done 
on the beamline. Such users become Observers, the 
Observer users can ask to become Master, if accepted by 
the current Master the roles switch and the current Master 
becomes an Observer. This system guarantees that only 
one user at a time can use the beamline. It also ensures 
data confidentiality since the Master user has to grant the 
access for a user to become Observer. The current 
ongoing procedure is paused if the current Master client 
loses connection to the system. 
 

MXCuBE3 takes advantages of the application wide 
state stored in the Redux store, to implement full user 
interface duplication for Observers. The application wide 
state of the Master is propagated to the Observers. 
Actions affecting the Redux store while the Master is 
using the application are captured and sent to the 
MXCuBE3 server using redux-persist. The MXCuBE3 
server relays these actions to the Observer clients, which 
update their state accordingly.  
 

User Interface 
The user interface has two principal views for setting 

up and running an experiment, Data Collection and 
Sample Overview.  
 

The Sample Overview shows the details for a set of 
samples. Each sample is represented as a card that 
contains information with the results of the data 
collections already performed on that sample along with 
the measurements that will be collected (see Figure 3). 
The sample information is obtained from ISPyB and 
synchronised with the sample changer contents. Users can 
apply a filter on name or location to display a particular 
sample or subset of samples. This provides the user with 
an easy way to get an overview of the experiments 
performed or yet to be done. It further gives the user an 
easy way to set up data collections on multiple samples at 
once and run them sequentially in an automatic fashion 
(referred to as pipeline mode). 
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Figure 3: In Sample Overview crystals are represented as 
cards containing sample data 

 
The Data Collection view provides the user with the 

necessary controls to perform an interactive data 
collection or sample realignment. The user can move the 
sample via the goniometer motor controls, located to the 
left of the interface, and center the crystal on the rotation 
axis by using a 3-click centring procedure. The user can 
further interact with the goniometer motors, to reposition 
the sample, by using hot keys and clicking in the sample 
video (see Figure 4). By interacting directly with the 
sample video, users can access tools to save centered 
positions, create lines between saved positions or draw a 
grid to collect diffraction data over an area. The user is 
presented with context menu listing the available data 
collection methods available for the type of selection 
made (point, line or grid). A top-bar displays experimental 
values of the beamline that define the diffraction 
experiment, such as energy and detector distance. Data 
collections on the currently mounted sample  are added to 
a queue shown on the right side and their status is updated 
while they are performed. 
 

 

Figure 4: Data collection view, with grid data collection 
and result overlay, motor controls to the left, and data 
collection queue to the right. 

RESULTS 
MXCuBE3 has been actively developed during the last 

two years. The users experience with MXCuBE2, which 
has been in operation during the last five years, inspired 
the design and the functionality of the new interface. A 

pre-release of MXCuBE3 with a reduced feature set was 
used both for the commissioning of BioMAX beamline at 
MAX IV, and in subsequent user operation. First user 
feedback was very positive and encouraging. Users 
regarded the interface as much easier to use compared to 
previous versions of MXCuBE and control software in 
use at other synchrotron sources. Even less experienced 
users easily found their way applying the different data 
collection methods. This commissioning phase and user 
input have been valuable in subsequent improvement of 
the user experience.  
 

Another remarkable result is the synergetic effort that 
two independent facilities were able to invest in the 
development of MXCuBE3, despite the different short 
term needs. The project roadmap have evolved from the 
initial planning to accommodate the new priorities. 
MXCuBE3 is a successful project thanks to the effort 
made by the team to keep the communication channels 
active and proactively collaborate.  

CONCLUSION AND FUTURE WORK 
In the short term, a feature-complete version of 

MXCuBE3 will be deployed at the ID29 beamline at the 
ESRF, then at its other MX beamlines. This is expected to 
happen during October 2017, and will mark the official 
release of MXCuBE3. At the same time the MAX IV 
BioMAX beamline will also upgrade to the latest version. 
 

Deployment on different end-stations is expected to 
drive the finalisation of the user interface and the 
implementation of currently available data collection 
methods, eventually leading to MXCuBE3.1, which is 
foreseen for the second quarter of 2018.  
 

In the meantime we expect that other partners of the 
collaboration to profit from the development to install 
MXCuBE3 at their sites. In a longer term, MXCuBE3 
should evolve to integrate more novel data collection 
methods, in particular in the field of serial 
crystallography. 
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