
CS-STUDIO DISPLAY BUILDER*

K.-U. Kasemir, Megan Grodowitz, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract
The Display Builder started as a comprehensive update

to the Control System Studio “BOY” panel editor and
runtime.

The design was changed to a modular approach, sepa-
rating the model of widgets and their properties from the
graphical representation and the runtime. The model is
fully multithreaded. The representation has been demon-
strated in both SWT and JavaFX, for now intending to
concentrate on the latter. The runtime, based on the
thread-safe model, avoids user thread delays and im-
proves overall performance for complex widgets like
images as well as scripts and rules.

We present the current state of the development and ini-
tial deployments at beam lines of the Oak Ridge National
Laboratory Spallation Neutron Source (SNS).

MOTIVATION
Control System Studio (CS-Studio) is a collection of

control system tools [1,2]. Its most visible component to
end users is typically the operator interface panel builder
known as “BOY” [3]. Its versatility has led to the adop-
tion of CS-Studio at several sites, sometimes replacing
existing display technologies [4]. At SNS beam lines, the
BOY support for scripting languages allows good integra-
tion between interactive and automated experiment con-
trol [5].

After about a decade of successfully using BOY at the
SNS, we started to recognize limitations in the underlying
architecture. Both the BOY display editor and the runtime
are based on the Eclipse Graphical Editor Framework
(GEF) [6]. While this greatly accelerated the initial devel-
opment of BOY, it ties the software to the SWT [7]
graphics library. Furthermore, the BOY widget model can
only be accessed on the user interface (UI) thread, in part
because of its tight integration with GEF and SWT, which
limits access to widget properties to the UI thread.

Opening a new display file that resides on a busy file
server may be slow. While scripts are very convenient to
implement and update, their execution speed is often
limited. In the BOY software architecture, the loading of
displays and the execution of scripts needs to be handled
on the UI thread, which can cause the whole user inter-
face to temporarily stop updating, which end users then
experience as a “freeze-up”.

DISPLAY BUILDER DESIGN
The Display Builder is meant to offer the same basic

functionality as BOY, but in a modified software design.

Widget Model
The Display Builder Widget Model is a description of

all widgets and their properties. At this time, we imple-
mented 42 widget types, categorized as follows.

 Graphic widgets that display static content:

Label, Rectangle, Polyline, Picture, ...
 Monitor widgets that display the value of a

control system Process Variable (PV): Text
Update, LED, Meter, …

 Control widgets that allow the user to modify
the value of a PV: Text Entry, Knob, various
buttons, …

 Plot widgets that show one or more PVs, in-
cluding waveforms in various ways: X/Y Plot,
Image, Data Browser

 Structure widgets that are used to arrange
widgets within a display: Array, Group, Em-
bedded Display, Navigation Tabs

 Miscellaneous widgets: Web Browser
The Widget Model is fully thread-safe, that is multiple

threads can for example concurrently update the “text”
and “foreground color” properties of a “Label” widget.
Software that has subscribed to widget property changes
receives immediate notification of updates. The widget
model is not tied to any specific graphics library. This
includes the description of colors or fonts, for which the
Display Model implemented its own data objects to avoid
outside dependencies.

Widget Representation
The Widget Representation module of the Display

Builder renders the Widget Model with a specific
graphics library. There are currently two implementations.

One is based on SWT, as in BOY. The SWT implemen-
tation is meant to demonstrate that our design is not tied
to a specific graphics library, but it is limited to very few
widget types and will at this time not be extended.

The second implementation is based on the newer Ja-
vaFX technology [8]. All widgets are fully supported by
this representation, which is our emphasis for the foresee-
able future of the Display Builder.

Widget Editor
The Widget Editor shown in Fig. 1 allows users to inter-

actively create and modify displays by positioning widg-
ets and adjusting their properties.

A widget is added to a display by dragging it from the
widget palette into the display, and then adjusting its
properties. The “Properties” lists all properties of a widg-
et, grouped into sections. Key properties tend to be listed
at the start of the list, including for example the position
and PV Name, which are often the only properties that

 __

* ACKNOWLEDGMENT OF FUNDING
This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
contract number DE-AC05-00OR22725.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THSH303

THSH303
1978

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

need to be adjusted. Widget properties are listed in a con-
sistent, meaningful order. For instance, the position is
always presented as “X”, “Y”, “Width” and “Height”.
Widgets with “Foreground” and “Background” colors will
always show them in this order.

The position and size of a widget can also be adjusted
by moving the widget within the display with the comput-
er mouse. The primary PV name of a widget, or for Label
widgets the text, can alternatively be entered by double-
clicking the widget, which opens in in-place editor for the
text respectively PV name.

Figure 1: Widget Editor.

Widget Runtime
The Runtime connects widgets which depend on PVs to

the control system, and dispatches value updates received
from the control system to the associated widget proper-
ties. The Runtime instantiates script engines, currently
supporting JavaScript as well as Jython and Python, for
widgets that use scripts.

The Runtime is prepared for the latest EPICS V4 [9]
data types, including the image data type, which is dis-
played in the associated Image widget shown in Fig. 2.

Multithreading
When opening a display file, the actual file access,

parsing of the content and the creation of the Display
Model are all handled in background threads. Compared
to BOY, this is especially efficient for modular displays
where a top-level display contains several embedded
displays. With BOY, all CS-Studio display updates would
be suppressed while the top display and then each of the
embedded displays are sequentially loaded, until finally
the complete display can be represented.

In the Display Builder architecture, the top display is
opened in a background thread. Once its main-level widg-
ets have been loaded, they are represented on the screen.
Now the content of all embedded displays is loaded in
parallel background threads. They are represented on the
screen as their information is parsed.

When for example the update of a numeric value is re-
ceived from the control system, this data may need to be
converted into a string, or it may trigger the execution of
a script, and finally the result is displayed on the comput-
er screen. The handling of PV value updates as well as the
execution of scripts is performed in background threads
against the thread-safe Model. The UI thread is only used
as necessary by the Representation when it performs the

actual user interface update. The Representation further
throttles screen updates to reduce the likelihood of user
interface “freeze-up”.

Figure 2: Widget displaying EPICS V4 Image.

Macros
The Display Builder supports macros. As in BOY, mac-

ros can be used for text, including the PV Name, Label or
Tool Tip of a widget. In addition, macros are now sup-
ported for numeric or boolean widget properties. For
example, the width of a widget can be based on a macro.

The values for macros can be set as global preferences,
or they can be defined in a display, for example in the
properties of a “Button” widget that opens a display. As a
fallback, environment variables are read as macro defini-
tions, allowing for example “$(USER)” as a macro to
fetch the name of the current user on Linux systems.

Widget Classes
A widget class defines a set of widget properties. For

example, a “COMMENT” class for the Label widget
might be defined as having its font set to a smaller size,
while a “TITLE” class for the Label widget can be de-
fined to have a larger font, a certain color and position
that is fixed to the upper-left corner of the display.

When editing a display and adding a Label widget, the
user can decide to either directly configure the font prop-
erty of the Label, or to select one of the predefined Label
classes, which would set the font, position etc. based on
the class definition.

BOY Compatibility
The Display Builder reads and executes most BOY dis-

plays without any changes. The widget set and their prop-
erties are very similar, but have been refined. Instead of
the one LED widget in BOY, the Display Builder pro-
vides a basic on/off type LED and a separate Multi-State
LED widget, since their configuration details are quite
different with respect to addressing bits in PV values. At
the same time, the BOY Rectangle and Rounded Rectan-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THSH303

User Interfaces and User eXperience (UX)
THSH303

1979

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

gle widgets have been joined into one Rectangle widget,
with corner radius simply becoming a rectangle property.
Existing *.opi displays with LED or Rectangle widgets
are automatically translated into the updated format.

Compatibility is limited for plotting widgets like the
XY Plot and Image widgets. The new XY Plot widget
supports waveforms, including error information. Legacy
displays that used the XY Plot for scalar data over time
need to be updated to the Data Browser widget.

Finally, while BOY displays that used rules are often
translated without problems, legacy scripts need to be
updated because the underlying programming model has
changed.

In case of incompatibilities, the original BOY *.opi file
is loaded in the Display Builder editor, manually adjusted,
and saved under the new *.bob file extension. When the
Display Builder runtime opens a file, it will always check
for both the legacy *.opi and the new *.bob file extension,
preferring the latter. Existing display file hierarchies can
thus for the most part remain unchanged, only adding new
*.bob files as necessary when the existing *.opi files are
not sufficient. This is especially useful during transition
periods where BOY continues to be used, while the Dis-
play Builder is phased in, because the existing *.opi re-
main unchanged.

CS-Studio Integration
While the Display Builder editor and runtime can be

executed as standalone tools, they are also fully integrated
in CS-Studio. For example, when the display builder
runtime executes a display file within CS-Studio, the
context menu allows users to inspect displayed PVs in
other CS-Studio tools.

Figure 3: Sample Centering.

A drawback of the CS-Studio integration is currently

the need to host the JavaFX graphics within an SWT
canvas, which slightly reduces the achievable update rates
compared to the standalone versions.

USE AT SNS
The Display Builder is operational on 5 SNS beam

lines, and is the designated tool for SNS beam lines from
now on. The displays for 8 other SNS beam lines can be

viewed in the Display Builder, but their operation still
depends on BOY until scripts have been converted.

Several beam line applications benefit from the en-
hanced plotting and image support of the Display Builder.
Fig. 3 shows the Display Builder interface for a sample
centering application. An image widget displays a camera
snapshot of the sample which is mounted on the end of a
stick. Users select a desired point on the sample by click-
ing into the image. The coordinates are written to PVs
which trigger motor moves to position the selected sam-
ple spot in the center of the beam.

Figure 4: Detector Histogram.

Fig. 4 shows a detector histogram. The histogram im-

age, sized about 3000 x 1600 points, exceeds the physical
screen resolution. When receiving updated data, the Dis-
play Builder prepares the actual image, using the desired
color map, in a background thread, and finally presents it
on the screen. Users can interactively zoom into individu-
al pixels of the histogram. Clicking on a pixel presents
detail about the location of that detector pixel with respect
to the sample, the scattering angle and more.

Figure 5: Example of Experiment Setup Tool.

The use of the Display Builder on SNS beam lines

grew from simply interacting with the beam line control
system, i.e. from commanding motors and displaying
detector counts, to providing tools for experiment plan-
ning. Fig. 5 shows how users are guided through several
steps of preparing their experiment, in this example by
predicting expected Bragg peaks, then aligning the sam-
ple based on detected peaks. Such step-by-step planning
tools benefit from the Navigation Tabs widget, a container
widget that allows users to navigate between sub-displays
within a page.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THSH303

THSH303
1980

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

SUMMARY
The Display Builder is a comprehensive update of the

CS-Studio BOY. Initial use on SNS beamlines has proven
to be successful. Many existing displays continue to be
functional because of excellent compatibility of the Dis-
play Builder to BOY, and new types of displays, especial-
ly for detectors, have now become possible.

ACKNOWLEDGMENT
We thank the original developer of BOY, Xihui Chen,

for the excellent set of features and ideas upon which we
could base the new Display Builder architecture.

We thank part-time SNS team member Amanda Car-
penter for her contributions to the Display Builder im-
plementation, and Claudio Rosati from the European
Spallation Source for the ongoing collaboration. We thank
the members of the SNS Instrument Data Acquisition and
Controls group as well as SNS beam line personnel for
their acceptance and feedback.

REFERENCES
[1] J. Hatje et al, “Control System Studio”, ICALEPCS,	

Knoxville,	USA,	2007	

[2]	K.	Kasemir,	 “Control	 System	Studio	Applications”,
ICALEPCS,	Knoxville,	USA,	2007	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	[3] X. Chen, K. Kasemir, “BOY, a modern graphical
operator interface editor and runtime”, ICALEPCS,
New York, USA, 2011

[4] M. Furseman et al, “Adopting and Adapting Control
System Studio at Diamond Light Source”,
ICALEPCS, Melbourne, Australia, 2015

[5] K. Kasemir, M. Pearson, “CS-Studio Scan System
Parallelization”, ICALEPCS, Melbourne, Australia,
2015

[6] Eclipse Graphical Editor Framework, GEF,
http://www.eclipse.org/gef

[7] Standard Widget Toolkit, SWT, https://eclipse.org/swt

[8] M. Pawlan, “What is JavaFX”, Oracle Java Documen-
tation,
http://docs.oracle.com/javafx/2/overview/jfxpub-
overview.htm

[9] L. Dalesio et al, “EPICS V4 Expands Support to Phys-
ics Application, Data Acquisition, and Data Analy-
sis”, ICALEPCS, Grenoble, France, 2011.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THSH303

User Interfaces and User eXperience (UX)
THSH303

1981

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

