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Abstract

Among other functionalities, the Tensorics library pro-

vides a framework to declaratively describe expressions of

arbitrary values and resolve these expressions in different

contexts. The Streamingpool framework provides a comfort-

able way to transform arbitrary signals from devices into

long-living reactive streams. The combination of these two

concepts provides a powerful tool to describe modules for

online analysis. In this paper we describe this approach,

elaborate on the general concepts and give an overview of

actual and potential use cases as well as ideas and plans for

future evolution.

MOTIVATION

Devices of accelerators deliver their measurement data

through asynchronous channels to which higher level ap-

plications can subscribe. This data can be seen as streams

of data items. Recent technology evolution provides con-

cepts on top of which a framework for management of such

streams - Streamingpool - was created and is used in oper-

ational applications, as described in [1]. Most of the time,

subscribing to a single stream is not sufficient, but multiple

streams have to be combined and some decision based on a

certain logic has to be taken. To base such logic completely

on asynchronous operators, as provided by RxJava (the tech-

nology used and provided by Streamingpool), turns out to

be overly complicated and difficult to read and debug. Addi-

tionally, experience from previous application developments

at CERN (e.g. the Software Interlock System [2]) showed

that it was favorable to base such analysis on immutable

snapshots.

When work was started by the BE-OP-LHC software team

on a new system for LHC (Large Hadron Collider) injection

diagnostics, exactly these challenges arose. The goal was

to be able to formulate conditions in a way which could be

read and understood by non-programmers and at the same

time provide the necessary comfort (e.g. IDE support and

code completion) for people who have to formulate such

conditions. Further, as good results were already achieved

with a similar approach for powering test analysis in the

LHC [3,4], it was decided to aim for a Java internal Domain

Specific Language (DSL).

This finally led to the analysis framework described in

this contribution. It is built in a modular way and consists

of the following components, which can be used alone or

together, depending on the usecase:

• Streamingpool [1] provides an abstraction to streams

of data coming from accelerator devices and, in the

context of the analysis framework, is used for all kind

of asynchronous processing which is required to build

the snapshot which then is passed on to the real anal-

ysis logic (e.g. triggering, buffering and mapping of

streams).

• The Analysis DSL is based on (and an extension to) the

DSL provided by the Tensorics library [3]. It describes

the logic to apply to the data and can e.g.be used stand-

alone, for example to analyze static data (e.g. by pulling

from the LHC logging service).

In the following sections these components are described in

further detail.

STREAMING POOL

Streamingpool is an open-source framework [1, 5] that

abstracts the way long-living reactive streams are discovered,

created and managed.

In the Streamingpool, each stream is uniquely identified by

a StreamId. A StreamId provides an abstraction over what the

developer wants to get as stream (e.g. a stream of data from

an hardware device). Given a StreamId, one can discover

the associated stream (returned as a Publisher<T>) using a

DiscoveryService. This service queries the Streamingpool

for the stream that is identified by the provided StreamId. If

the stream was already discovered before the Streamingpool

then returns the same Publisher<T>, otherwise triggers its

lazy creation and then caches it for subsequent requests.

ANALYSIS DSL

The logic for an online analysis is described by extend-

ing the AnalysisModule. The AnalysisModule provides a cus-

tom Java-based DSL for expressing the analysis logic. This

feature gives the possibility to the developer to implement

complex logic while having the full flexibility of the Java

programming language. It also makes the analysis type-

checked as it is possible to check for errors at compilation

time and it gives full auto-completion capabilities during

the development.

Assertions

The basic building blocks for an analysis are assertions.

They are used for specifying conditions to check during the

analysis. As an example, consider a user wants to assert that

“protons are produced”, but this condition should only be

taken into account when “protons are requested” (because

only then the condition makes sense).

This could be formulated through the analysis DSL as

shown in Listing 1.
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Listing 1: Assertion inside an Analysis Module code example.

whenTrue ( PROTONS_ARE_REQUESTED )

. thenAssertBoolean ( PROTONS_ARE_PRODUCED )

. isTrue ();

Here, both constants (PROTONS_ARE_REQUESTED and

PROTONS_ARE_PRODUCED) refer to StreamIdBasedExpressions,

as will be explained in a following section.

The example shows that an assertion is in general com-

posed of two boolean expressions: the condition and the

precondition. The precondition is formulated in the whenTrue

(...) clause (“protons are requested” in the above example).

The condition representing the real business logic is then

specified using the thenAssert...(...) family of methods.

If preconditions are omitted then they will be considered as

being always true.

Based on this defined logic, each assertion can then re-

sult in one of the following states, whenever the analysis is

evaluated:

• SUCCESSFUL: if the boolean condition yielded true as

result.

• FAILURE: when the condition has false as result.

• NON_APPLICABLE: if the precondition expression was

evaluated to false (masked).

• ERROR: when an expected error occurred during the

evaluation of the condition or precondition expression.

Analysis Result

After evaluation, each analysis module also produces an

overall result, which represents the summary of all assertion

results contained in the module. Possible result values are:

• SUCCESSFUL: all the assertions in the module are

SUCCESSFUL or NON_APPLICABLE (masked).

• FAILURE: at least one assertion yielded value ERROR or

FAILURE, so the overall analysis is considered a failure.

• ERROR: an unexpected error happened during the evalu-

ation of the AnalysisExpression.

Evaluation Strategies

Typically, an online analysis has streams as inputs (identi-

fied by StreamIds, as described before). A specialized anal-

ysis module, called StreamBasedAnalysisModule, is provided

for further extension to cover these cases. This class provides

additional functionality to the DSL for working with streams

of data. The exact behaviour of an online analysis module

depends on the sub-type of StreamBasedAnalysisModule from

which it inherits. The following three behaviour-types are

currently available:

• The logic of a ContinuousAnalysisModule is evaluated

each time any input stream of the analysis receives new

data, the analysis is recalculated with the latest value

of all the other streams. Further parametrization of the

behaviour is neither possible nor required.

• Logic from a TriggeredAnalysisModule is evaluated each

time a particular stream emits an item. The author of

the module can specify this stream as part of the DSL

of this type of analysis module. As data of the input

streams arrive, only the latest value per stream is kept.

When the trigger stream yields a value, the analysis

is then evaluated using the latest values for the input

streams that were previously saved.

Listing 2: Syntax for parametrizing a triggered analysis.

new TriggeredAnalysisModule () {

{

triggered ().by( aTriggerStreamId );

}

});

• Finally, the BufferedAnalysisModule specifies analyses

that act on buffered input streams specified according

to a BufferEvaluation strategy. In this case, the DSL of-

fers specific methods for specifying when the buffering

should start and end. A key class for buffered online

analyses is the BufferedStreamExpression, which is a

node in the analysis graph that takes a StreamId as pa-

rameter. During the evaluation of the analysis module,

a BufferedStreamExpression yields the buffer contain-

ing the values that have be saved from the stream of

data identified by the specified StreamId. In this way,

the buffering and the stream definition (StreamId) are

decoupled. An example DSL snippet for specifying

buffer start- and end-streams looks like this:

Listing 3: Example of a BufferedAnalysisModule.

new BufferedAnalysisModule () {{

buffered ()

. startedBy ( startStreamId )

. endedOnEvery ( endStreamId )

.or ()

. endedAfter ( Duration . ofSeconds (10));

}});

TENSORICS EXPRESSIONS

The expression part of the analysis framework is based on

Tensoric Expressions, which are provided by the Tensorics

open-source project [6]. This part of the library provides a

Java DSL to describe operations on input data which can later

be applied to incoming data in different contexts. Technically

speaking, a Tensorics Expression is a node in a direct acyclic

graph (typically a tree in simple cases, as e.g. illustrated

in Fig. 1) which can have children and can be resolved to

a specific value. The main advantages of this approach,

compared to directly executing Java code are the following:

• The graph is an immutable Java object and can be seri-

alized (with some restrictions). This makes it possible

that e.g. the analysis rules can be sent at runtime to

another Java process (potentially on another host). This

enables distributed computing without redeployments.
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• The information contained in the graph can be accessed

easily for further processing. This feature is used within

the analysis framework e.g. to automatically construct

meaningful names for the assertions. Further it will

make it possible to create generic GUI components,

which can e.g. display detailed information on the

reasons why certain assertions failed. This is a similar

approach as taken in [3].

• Since the full information of the graph is available, it

is trivial to determine the required input data (the leave

nodes), which is very hard if plain Java execution would

be used. This is a key-concept for the described analysis

framework: A dedicated StreamFactory determines the

required input streams from the graph and passes them

on as input to the resolution mechanism.

• The resolution mechanism itself can be optimized with-

out changing (or even recompiling) the graph logic.

This will be described in the following section.

Figure 1: Tree structure for an online analysis.

An Example

First of all it shall be noted that, although the expression

mechanism comes from the Tensorics library, we are not

using any tensors here. Actually, the expression mechanism

is generic, so that it can in principle be extended to any

operation required.

Consider calculating the average bunch intensity from

the total beam intensity and the number of bunches. The

corresponding logic would look somehow like this:

Listing 4: Example of a TensoricsExpression.

Expression <Double > totalIntensity ;

Expression <Double > numberOfBunches ;

/* Creation omitted */

Expression <Double > avgBunchIntensity =

TensoricDoubleExpressions

. calculate ( totalIntensity )

. dividedBy ( numberOfBunches );

After executing this piece of code, the variable

avgBunchIntensity, would represent a tree with one oper-

ation (division) and two operands as leaves (total intensity

and number of bunches).

The resolution of the actual value of such an expression is

delegated to a ResolvingEngine. This would in the simplest

case look like this:

Listing 5: Resolving an Expression.

ResolvingEngine engine ;

/* Creation omitted */

Double result = engine

. resolve ( avgBunchIntensity );

The resolving engine is an object that is able to walk

through the graph and resolve the nodes. It does so by the

use of so-called resolvers, each of them capable of resolv-

ing a specific type of expression to its value. The detailed

algorithm is exactly the same as described in [4] and is thus

not repeated here. However, compared to DSL used in the

accelerator test tracking framework (AccTesting) [3, 4], the

tensorics expression language has the following improve-

ments:

• The resolved type can be any Java type, while in the

AccTesting language required special wrapper types.

• The tensorics language provides support for several

steps our of the box (e.g. calculations based on scalars,

tensors and iterables), which are very hard to implement

in the AccTesting DSL, because of the limiting data

types used in there.

Any node of the graph can carry a value

(called ResolvedExpression) or be unresolved

(AbstractDeferredExpression). In the latter case, the

value of the node is calculated by one Tensorics Resolver

when the graph is resolved. The concept Resolvers provides

the necessary decoupling of expression and corresponding

code execution: For example, if a node is implementing the

sum operator, a custom Resolver has to query the result of

the operands and then return the sum of the values. In the

above example, the totalIntensity variable could e.g. be

assigned to a particular expression that represents a variable

in the logging system and a point in time. A corresponding

resolver would then pull the corresponding value from the

logging system when queried by the resolving engine.

Resolving Context

During the resolution of the final graph result, the nodes

are resolved bottom up (leafs first) and all sub results are

collected in an object called ResolvingContext, so that they

are available for the resolvers of the parent node. The resolv-

ing engine provide an additional override to the resolve(..)

method, which allows to feed in an initial context. The con-

text can be seen as a simple map from expression to the

resolved value of it and also can be constructed as such. If

all the inputs are provided, then the resolving engine can

do the calculation with its internal resolvers only (without

any special one - e.g. to query the logging database). In this

case the above example reduces to a simple calculation:
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Listing 6: Example of a TensoricsExpression.

Expression <Double > t =

Placeholder . ofName ("t");

Expression <Double > n =

Placeholder . ofName ("n");;

Expression <Double > avg =

TensoricDoubleExpressions

. calculate (t). dividedBy (n);

ResolvingContext ctx =

ResolvingContext .of(t, 2.2 e11 , n, 2.0);

ResolvingEngine engine =

ResolvingEngines . defaultEngine ();

Double result = engine . resolve (avg , ctx);

/* results in 1.1 e11 */

EXTENSIONS TO STREAMING POOL

The Analysis framework uses exactly the feature of a

prefilled context - as described in the previous section - in

order to bridge Streamingpool and Tensorics Expressions.

The required extensions to streamingpool are encapsulated

in the streamingpool-ext-analysis project [7]. The main parts

of this extension are the following:

• A StreamIdBasedExpression<T> can be used as a node

in the DSL and carries as payload a corresponding

StreamId<T>.

• The AnalysisStreamId has as payload an expression tree

which describes the analysis logic. Its leaves potentially

can be instances of StreamIdBasedExpression<T>

• Several different implementations of StreamFactory are

responsible for determining the required input streams

from the expression tree of the AnalysisStreamId

, looking up the corresponding streams, apply-

ing the required buffering strategy, correctly prefill-

ing the ResolvingContext and finally querying the

ResolvingEngine for the final analysis result.

In other words, the pre-filled ResolvingContext represents

a snapshot of the input data to be analyzed. This approach

makes the real logic synchronous and reproducible. An

extension, envisaged for the future, is also the possibility

to record the input data and either replay later the snapshot

only or even the individual streams. This would make it

possibly to debug logical issues or even inconsistencies in

the asynchronous behaviour.

TECHNOLOGIES

The analysis framework is based on the latest technologies

available on the Java world. In addition to the aforemen-

tioned Tensorics Expressions and Streamingpool, Spring [8]

is used for dependency injection and reactive streams [9] are

used for handling inputs (using RxJava [10] as Java imple-

mentation).

The code of the online analysis framework makes heavy

use of the latest Java features: Default methods in Java inter-

faces are used for composing utility classes for making unit

testing as easy as possible. Furthermore, the public API of

the framework has been crafted to be compatible with Java

8 lambdas where possible, in order to optimize the coding

experience of the user.

SPRING BOOT STARTER PROJECTS

The online framework presented in this paper makes use

of Spring for dependency injection. In order to ease the

adoption of the online analysis framework, a set of Spring

Boot project have been created ( [5]). Given the way Spring

Boot works, just by adding the starter project as a depen-

dency in a Spring Boot application, the developer will have

a pre-configured online analysis environment ready to be

used. Customizations are still possible by overriding the

default values were required by any particular scenarios.

APPLICATIONS

The presented online analysis framework was mainly

driven by the development of the LHC Filling Diagnos-

tic [11]. This is a software that evaluates the status of the

CERN’s accelerators control system in order to provide a di-

agnostic for the LHC injections. In order to achieve this goal,

it subscribes to many signals from the control systems of

LHC and SPS accelerators and compares the signals against

specific rules. The result of the online analysis is the status

of a LHC injection and an explanation in case it fails. The

tool is currently in beta version. Despite this, it is currently

being of help to the LHC operations crew and for statistics

gathering for the LHC injection performance.

Further applications are under investigation, e.g. for a

continuous check of a new variant of the LHC Beam Dump

Loop or several new displays in the LHC to assist the opera-

tions crew in quick decisions. Another idea is to use this as a

base for future developments towards a more state-machine

driven operation of the LHC.

SUMMARY AND OUTLOOK

In this paper a new framework for online analysis was pre-

sented. Based on Streamingpool and Tensorics frameworks,

it provides an easy way of specifying and managing analysis

of signals. At CERN these kind of analysis is especially use-

ful to monitor the state of the accelerators control systems

as well as the state of the hardware devices.

The framework features a powerful and extensible Java-

based DSL that a developer can use to create custom analyses.

With the concept of assertions and evaluation strategies, the

analysis can be adapted to a large variety of use cases.

There are numerous ideas for improving the framework.

The most important one of them is the notion of time in the

analysis buffers. At the moment, when a developer selects

a buffered evaluation strategy, the buffer is provided as a

list of items. In this situation is not easy to correlate data

between signals that arrive at different moments in time. A
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prototype version of this improvement is under development

and the details will be presented on a different paper.
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