
USAGE AND DEVELOPMENT OF WEB SERVICES AT MAX IV

A. Milan-Otero∗, J. Forsberg†,

F. Bolmsten, J. Brudvik, M. Eguiraun, V. Hardion, L. Kjellsson,

D. P. Spruce, L. Zytniak, MAX IV Laboratory, Lund University, Sweden

Abstract

The web continues to grow as an application platform,

with accessibility and platform independence as major bene-

fits. It also makes it possible to tie services together in new

ways through simple APIs.

At MAX IV we are using web services for various pur-

poses related to the control system. For example, monitor-

ing servers and services, accessing alarm history, viewing

control system status, managing system and users logs and

running recurring jobs. Furthermore, all user management

is also accessed via web applications, and even data analysis

and experiment control can now be performed via web based

interfaces.

We make an effort to use existing tools whenever possible

(e.g. Kibana, Prometheus), and otherwise develop systems

in-house, based on current well established libraries and

standards, such as JavaScript, Python, Apache, etc.

This paper presents an overview of our activities in the

field and describes different architectural decisions taken.

MONITORING AND STATUS

In a large and complex control system environment it is

often very useful to collect information about many different

elements into a single place, to quickly look at some specific

aspect of them. We have investigated and implemented

several ways of accomplishing this for various purposes, and

this section presents the resulting applications.

State Grid

In a TANGO [1] control system, the State attribute of any

device gives a high level summary of its current mode of

operation and health. For example, if a device can be either

"on" or "off", this is reflected by TANGO states ON/OFF,

and if something is preventing it from normal operation, it

should enter the FAULT state.

To make better use of this information, we have developed

an application called the "state grid", see Fig. 1. It’s a hier-

archical 2D grid of devices, where each grid cell represents

either the state of a single device, or the "worst" state of

another state grid. This way, we can show a top level grid

that represents the collective states of an entire system, for

example a storage ring. Bad states will "bubble" up from the

lower levels. The user can drill down to get further detail

by clicking grid cells, in order to identify any problematic

device(s). It’s also possible to open control panels for indi-

vidual devices from the grid, in order to further diagnose

problems or directly interact with devices. The main usage

∗ antonio.milan_otero@maxiv.lu.se
† johan.forsberg@maxiv.lu.se

of this application is to get a "bird’s eye" view of the current

operation and health of the entire control system.

The state grid is mainly implemented as a HTML5 ap-

plication using JavaScript. It is backed by a specifically

developed TANGO device that collects the current state

from a configured set of devices via event subscriptions and

makes this information available as an attribute.

Figure 1: State grid for the large storage ring at MAX IV,

showing different subsystems (columns) in each achromat

(rows). Clicking the cell marked as "A" changes the grid to

displaying the "subgrid" for that part of the machine (in this

case the magnet subsystem for achromat 1). The subgrid in

turn shows different types of magnet systems (columns) in

the parts of the achromat (vertical). Clicking cell "B" here

finally reveals individual TANGO devices. Note that the

STANDBY state of these devices "bubbles" up to the top

level grid since it’s considered more important than the ON

state.

Monitoring and Alerting

The "state grid" described above gives operators an im-

mediate grasp of the current situation, but it’s also very

simplified and provides little help when trying to find out

what previous events were the root causes of a problem.

Conversely, a logging system is usually only configured to

store logs for devices that are either new, or suspected to

have some issue, since logging usually also means some per-

formance overhead. It also only stores information that the

developer has deemed to be of interest. Part of the missing

piece is what’s usually called an archiving system, but that

in turn usually focuses on end user relevant information such

as equipment readings.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA170

THPHA170
1826

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



For the more general case, it’s useful to also have a mon-

itoring tool that continuously collects various system in-

formation and stores it over time. This allows for "post

mortem" investigation and discovery of things like slow

memory leaks and other unexpected resource usage patterns.

Prometheus [2] is such a tool, which is currently in use at

MAX IV. Apart from the usual system metrics (CPU, mem-

ory, network, etc) for each server in the system, we have

also developed an "exporter" that monitors TANGO servers.

Exporters of health information for specific systems such as

the Beam Position Monitors (BPMs) and the HDB++ archiv-

ing system have also been developed. This information is

mostly useful for developers and engineers, since it typically

requires technical knowledge to be interpreted.

Prometheus can be configured to send out alerts if some

arbitrary conditions are fulfilled, based on recent data. We

use this to get emails when e.g. a host is running low on disk,

or when a TANGO server suffers from problems that prevent

normal operation. This kind of service, if used properly, can

increase the confidence in the control system since it allows

the engineers to know about and potentially even solve issues

before they impact the users.

Grafana [3] is another service that focuses on displaying

"dashboards" composed of plotted data from other services

like Prometheus. We use Grafana to configure convenient

overviews.

Logging

Logging is an essential tool in software development and

deployment. The usual method is to log errors and other in-

formation to the local filesystem, in some text format. While

it’s easy to access file based logs in a local development en-

vironment, it quickly becomes very tedious to look through

multiple files spread out across networked hosts in a dis-

tributed environment. There are many existing solutions to

this problem, usually implemented as some form of agent

running on each host, periodically checking local logfiles

for new lines, and pushing those to a centralized database

(e.g. Logstash, Splunk) for convenient querying.

Specifically for use with TANGO we have developed a

"logger" device [4], which uses Elasticsearch [5] as a storage

backend and acts as a standard TANGO logging target. This

means that any other TANGO device can be configured to

push its log messages to the logger device. It is also able to

store alarm events from PyAlarm devices.

On top of the database, we use Kibana [6] to provide a

flexible web interface to the data for use by operators and end

users. Predefined queries can be configured to give a quick

overview of, for example, the number of vacuum related

alarms over some specified period of time, but also allows

navigating down to individual events, see Fig. 2. This has

become a valuable tool for tracking down problems.

Machine Status

In a synchrotron, it is important to know the status of

the accelerator in each moment. This information is crucial

Figure 2: Kibana 3 user interface to the alarm data stored in

Elasticsearch. The histogram shows the number of alarms

over time, and the list at the bottom shows each individual

alarm events. The dashboard is configured with some preset

filters that can be activated to restrict the information shown

in various ways. Custom searches on the various fields are

also possible.

and could affect the decisions of different subsystems or

beamlines.

At MAX IV we have our systems split in different net-

works, which pushed us to find a reliable design based on

distributed systems. In order to fulfill this requirements we

have adopted a web service based on events.

As shown in Fig. 3, this service is composed by four parts

working together to forward events from TANGO devices to

the web. First, we have a TANGO Device Server (StatusPub-

lisher) subscribed to events in the devices to be monitored

and pushing these events in the form of an HTTP POST

request. At least one instance of this device is running in

each network with devices to be monitored. The second

part is an Apache reverse proxy that receives these POST

requests and forwards them to another subnetwork that ex-

poses only limited information to others subnetworks inside

MAX IV. This subnetwork is usually called Demilitarized

Zone (DMZ). Next, we have a Python Flask [7] web server

running in the DMZ, receiving the HTTP POST from the

reverse proxy and forwarding them as Server Send Events

(SSE) to the clients to be updated. The fourth part is the

client, Fig. 4, a web application that is updated based on the

SSE events received. By utilizing SSE the clients do not

request data but instead listens for incoming events.

This solution was deployed in 2016 and is used daily at

MAX IV.

BEAMLINE CONTROL AND

ACQUISITION

The software applications used for direct control and data

acquisition of a beamline have requirements that were dif-

ficult to fulfill with web applications until few years ago.

Any usable user interface needs to react to user interactions

quickly, also a web environment demands new interface de-

signs instead o mimic desktop applications. In addition, the

performance of these kind of applications has to be guaran-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA170

Software Technology Evolution
THPHA170

1827

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: Machine Status Architecture. On the left, the

TANGO devices in charge of gathering TANGO events and

forwarding to the Revese Proxy, which in turns makes HTTP

POST calls to the web server that faces clients

Figure 4: The main interface of the machine status applica-

tion. Separated panels for both rings displaying the historic

and instantaneous current, and status of the beamlines on

each ring. The bottom part is devoted to status messages

teed. Thanks to the latests developments and technologies

appearing in the web development, such single page applica-

tions, modern browsers, efficient communication protocols,

etc., the negative barriers have been overcoming, thus, bring-

ing modern and extensively used technologies into beamline

control.

This section presents two examples of how modern web

applications can be used to control and acquire data in a

beamline.

MXCuBE 3

MXCuBE is an application developed originally at ESRF

to control and automate routines in MX beamlines. After

a second version developed in collaboration with other fa-

cilities in Europe, a third version of MXCuBE [8] has been

created as a collaborative effort between ESRF and MAX

IV.

During the design of this third version, different architec-

tural solutions were evaluated, ending with the decision of

moving this software from a desktop application to a web

application. Due to this movement, the software originated

would benefit from several advantages that comes with a

single page application, like for instance, the decoupling of

code and services or the better support of remote operations

and cross platform requirements among others.

As a low level layer, MXCuBE 3 is using the same libraries

implemented for the previous versions of the software, keep-

ing in that way the same core in terms of hardware control

software.

As a back-end we are using a Python Flask web server,

implementing a REST API that provides the endpoints of

the application. It uses SocketIO for bidirectional commu-

nication between server and client, and Python Gevent for

asynchronous tasks. The client, Fig. 5, is developed using

mainly JavaScript React library [9].

Even being still under development, MXCuBE 3 has ac-

complished a grade of maturity that has made it available

for its usage in the BioMAX beamline at MAX IV with

successful results.

Figure 5: MXCuBE v3 user interface displaying a crystal,

a successful data collection and a new collection already

started.

TangoJS

The graphical user interfaces are key components that

impact in the beamline exploitation, usability and users sat-

isfaction. Recently, at MAX IV, we received the requirement

from our Bloch beamline of improving the interfaces that

will be used, making a special emphasis in the cross platform

and portability capabilities. For that purpose, we started the

evaluation of the usage of web services for the beamline

control and we decided to use TangoJS.

TangoJS [10] is a complete solution for creating TANGO

clients in a web application. Developed at Solaris Syn-

chrotron, is based on web components and has been designed

to be a modular, extensible and framework-agnostic front-

end stack. It has been built using modern web standards like

JavaScript ECMAScript 2015 (ES2015) and CSS3.

Built with Node.js, TangoJS is available in npm, making

easier its integrations into any Node.js project.

The stack provided by TangoJS is composed by several

elements. The first one to be mentioned is the tangojs-web-

component, which is a widget toolkit used for the creation of

front-ends. The core API used to built this components, or

any new component, is called tangojs-core. As a last element,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA170

THPHA170
1828

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



tangojs support the usage of different pluggable back-ends

called connectors. The connectors used in MAX IV were

tangojs-connector-local and tangojs-connector-mtango, pro-

viding the first one an in-memory mock and the second one

an mTango integration.

So far, at MAX IV, we have being using TangoJS to build

web applications to help during the commissioning of the

Bloch beamline, Fig. 6, receiving positive feedback from

the personnel involved.

Figure 6: An example of a Tangojs interface that displays

data extracted from the control system.

DATA ACCESS

The access and analysis of the data collected is a clear

example of an area that can benefit from the movement to a

web environment, due to the improvements in accessibility

and usability of that data.

In this section, two applications demonstrate the capabili-

ties and possibilities of web services applied to evaluation

of the data generated.

HDF5 Viewer

Once an experiment has been completed, it’s important

to have a quick and easy access to the generated data. In

order to improve the access to the tools and the analysis of

the data, at MAX IV we have developed an HDF5 viewer in

a form of a web application, Fig. 7.

Based on a REST API web service, this application pro-

vides a quick inspection of the data, without the need to

download or install any software, and allows in an easy way,

the remote access and analysis of the available data.

Although it’s still under development, it provides the ba-

sic functionalities expected in an HDF5 viewer such folder

exploration, data inspection, 2D and 3D plots, step through

image series, etc. And it will continue to receive new fea-

tures like dynamic zooming, Z-cutoffs in images and mobile

interface improvements among others.

HDB++ Viewer

The HDB++ archiving system was developed originally

at Elettra and is now also used and developed at ESRF. We

Figure 7: HDF5 Viewer plotting acquired 3D data from an

HDF5 file. On the left, the HDF data structure is presented

and the user can interact with it.

are taking this system into production at MAX IV with the

Apache Cassandra [11] database. The Java based viewer

which is part of HDB++ works well but it requires instal-

lation on the local computer and direct network access to

the database cluster. In order to make the data more easily

available to users, we have started development of a simple

web based user interface.

Since the timeseries data received for each attribute may

go into the millions of points if the time window is large

enough, it’s not feasible to send it in raw form to the browser

for plotting. Instead, with the use of the datashader [12] li-

brary, we reduce the data into a single bitmap image, where

each attribute is represented as a colored line. This has a ma-

jor benefit in comparison with other ways of downsampling

(such as averaging) in that it does not lose outliers in the data,

no matter how large the dataset. This can be very important,

for example when looking for short pressure spikes in long

term vacuum data. The images are encoded as PNG and

even at high resolution typically only occupy a few 10s of

kB regardless of the number of data points it shows.

The web interface, Fig. 8, provides a quick way of filtering

attributes, adding them to a plot and zooming/panning the

plot using the mouse. There is also a date picker for more

exact setting of time period. When the settings are changed,

the front-end requests a new plot image via HTTP, and draws

it.

This application is not yet ready for production as it still

has some performance and reliability issues, but the source

code is available [13].

CONCLUSION

In this paper we have collected various projects in use

at MAX IV that show how modern web applications can

substitute the traditional desktop software with at least equal

performance, better usability and portability, among other

advantages.

We have also given examples of how different architec-

tures and tools can be used in distinct areas of the control

system, allowing to find the best solution for each problem.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA170

Software Technology Evolution
THPHA170

1829

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 8: HDBPPViewer user interface. On the left, the user

can filter within all the archived parameters and select the

ones that will be plotted. The main view display the graphs,

the user can zoom in and out and get basic information when

hovering over the data.

We have found that adopting mature, community driven

and open projects is also very beneficial in a resource con-

strained situation.

ACKNOWLEDGMENT

As this paper is a collection of several projects in different

areas of the control system, MAX IV wants to express their

gratitude to every single person and institute involved in

any part of the development and deployment of the projects

exposed here.

REFERENCES

[1] TANGO controls, an open-source device-oriented control

toolkit. http://www.tango-controls.org/

[2] Prometheus, an open-source monitoring solution. https:

//prometheus.io/

[3] Grafana, open-source software for time series analytics.

https://grafana.com

[4] TANGO Logger device, GitHub repository,

https://github.com/MaxIV-KitsControls/

dev-maxiv-logger

[5] Elasticsearch, a distributed, RESTful search and analytics

engine, https://www.elastic.co/

[6] Kibana, https://www.elastic.co/products/kibana

[7] Flask, a microframework for Python, http://flask.

pocoo.org/

[8] M. Oskarsson, A. Beteva, D. De Sanctis, M. Guijarro,

G. Leonard, F. Bolmsten, M. Eguiraun, A. Milan-Otero,

J. Nan, and M. Thunnissen, "MXCuBE3 Bringing MX Experi-

ments to the WEB", presented at ICALEPCS2017, Barcelona,

Spain, 2017, paper TUBPL05, this conference.

[9] JavaScript React library, https://reactjs.org/

[10] TangoJS, a complete solution for creating web-based TANGO

Controls client applications, https://tangojs.github.

io/

[11] Apache Cassandra, http://cassandra.apache.org/

[12] Datashader GitHub repository, https://github.com/

bokeh/datashader

[13] HDBPPViewer GitHub repository, https://github.com/

MaxIV-KitsControls/web-maxiv-hdbppviewer

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA170

THPHA170
1830

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution


