
BUILDING S.C.A.D.A. SYSTEMS IN SCIENTIFIC INSTALLATIONS WITH
SARDANA AND TAURUS*

 D. Fernandez-Carreiras, J. Andreu, F. Becheri, S. Blanch-Torné, M. Broseta, G. Cuni, C. M.
Falcon-Torres, R. Homs-Puron, G. Jover-Mañas, J. Klora (on leave), J. Moldes, C. Pascual-Izarra,

S. Pusó-Gallart, Z. Reszela, D. Roldan, M. Rosanes-Siscart, A. Rubio, S. Rubio-Manrique,
J. Villanueva, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Barcelona, Spain

T. Kracht, M. T. Nunez Pardo de Vera, DESY, Hamburg, Germany
T. Coutinho, A. Homs, E. Taurel, ESRF, Grenoble, France

V. Hardion, A. Milan, D. P. Spruce, MAX IV Laboratory, Lund, Sweeden
P. Goryl, L. Zytniak, L. Dudek, Solaris, Kracow, Poland

Abstract
Sardana and Taurus form a Python software suite for

Supervision, Control and Data Acquisition (SCADA)
conceived for scientific installations. Sardana and Taurus
are open source and deliver a substantial reduction in both
time and cost associated to the design, development and
support of control and data acquisition systems. The
project was initially developed at ALBA and later
evolved to an international collaboration driven by a
community of users and developers from ALBA, DESY,
MAXIV and SOLARIS as well as other institutes and
private companies. The advantages of Sardana for its
adoption by other institutes are: free and open source
code, comprehensive workflow for enhancement
proposals, a powerful environment for building and
executing macros, optimized access to the hardware and a
generic Graphical User Interface (Taurus) that can be
customized for every application. Sardana and Taurus are
currently based on the TANGO Control System
framework but also capable to inter-operate to some
extend with other control systems like EPICS. The
software suite scales from small laboratories to large
scientific institutions, allowing users to use only some
parts or employ it as a whole.

INTRODUCTION
ALBA is a third generation synchrotron located near

Barcelona in Spain. The Beamlines started the operation
in 2012. The ALBA installation relies on Ethernet as the
standard fieldbus. This makes the installation
homogeneous, easy to maintain and guarantees a good
longevity of the components. About 1200 Ethernet
connections, 5000 identified instruments, and 10000
variables stored in the permanent database form the
infrastructure of the control system of the particle
accelerator. Each Beamline comprises about 40 Ethernet
connections, 200 instruments and 300 process variables
stored in the permanent database. In addition, Beamlines
have dedicated detectors, producing a throughput of 300
MB/s increasing every year with newer technologies [1].
Beamlines of the same institute or across different

installations share the basic requirements, although
depending on their particular purpose they may have
specific requirements; detectors, sample environments,
synchronization, etc.

One of the first decisions on the control system design
was TANGO[2] [3] as a framework. TANGO was chosen
among the three options considered. The other two were
EPICS [4], and a commercial SCADA. At that time, the
commercial SCADAs were not adapted to the
requirements, and although they presented some
interesting features off-the-shelf, like the archiving,
trending or the alarm handling, many applications needed
to be developed “ad-hoc” and a significant effort was
required to integrate motion, synchronization, the
sequencer, and the scientific data formats. In other words,
they were not a solution per se, but to be combined with
EPICS, TANGO or other toolkits. This is the usual case,
found for example at CERN, where PVSS (nowadays
integrated in WinCC) is combined with other frameworks
such as JCOP and UNICOS [5].

In several installations, like synchrotrons, we find a
large control system for the particle accelerators with
different subsystems such as vacuum, radio frequency,
power supplies, diagnostics, motion, timing and
protection systems. Besides, many “smaller” control
systems, one per experimental station, coexist, interact
and in some aspects share information and resources with
the central system. They usually have significantly
different requirements. We needed a flexible graphical
interface, allowing multiple clients, with a number of
specific capabilities such as the control of diffractometers,
and above all a powerful sequencer. Many of these
characteristics are found in SPEC [6]. SPEC is a complete
and powerful software tool, which for many years has
been and still is, the “de-facto” standard control system
for X-ray and neutron experimental stations. Still, SPEC
has few limitations, when aiming for multiple graphical
interfaces and in general managing multi-clients or using
operating systems other than Unix. Therefore at that point
ALBA decided to start a development of a SCADA for
scientific institutions: It was named Sardana [7] [8].

Sardana was early presented to the TANGO
community, where in particular DESY and the ESRF
showed interest and contributions. Later it became a

* On behalf of the Sardana community.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

THPHA169
1820

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

community with four formal members (light sources),
DESY in Germany, MAXIV in Sweden, SOLARIS in
Poland and of course ALBA in Spain, with a growing
number of users coming from commercial companies and
public institutes.

THE SCOPE OF SARDANA
Sardana provides optimized and standardized access to

the hardware, generic graphical interfaces, save/restore of
configuration and settings, software synchronization and
macro execution. A powerful sequencer, which manages
the edition and execution of macros and sequences, is
mandatory in any experimental station in a synchrotron,
and extremely useful in all cases. It forms a scientific
SCADA suite, covering the weaknesses industrial
SCADAs have for scientific applications, and enlarging
the scalability of scientific packages [9].

Sardana was conceived as a solution for a synchrotron,
but extendable to other scientific laboratories, like
neutron sources. It aims to be flexible and scalable. It has
been designed for suiting large installations like a particle
accelerator, or smaller such as experimental stations, or
small labs. Particle accelerators need synchronization,
control and data acquisition for vacuum, power supplies,
radio frequency stations, insertion devices and the
multiple diagnostics. Besides, traversal systems, like
equipment and personnel protection, monitor and control
the overall installation. Experimental stations share some
aspects, like vacuum and certain diagnostics. However,
optics are different from accelerators’; usually motorized
mirrors and crystals. Thus, the control system includes a
number of motors, typically about a hundred per
Beamline, mostly stepper and few servomotors, different
kinds of experimental channels, detectors, and often
spectrometers and diffractometers.

Sardana is developed in Python, which is a generally
established language in the scientific community. It uses
TANGO as a middleware. It is modular and open source,
with components having a clear and documented
interface, making it extendable by many programmers of
different institutes. It is based on a client-server model
where typically the server has two main entities: The
Device Pool and the Macroserver, which will be detailed
in the following sections.

Sardana focuses in the particular controls needs of
experimental stations. It provides an environment to
manage macro edition and execution, handling the
different combinations of hardware and software. It
manages multiple clients, and access to the hardware and
storage of experimental data. It provides standard
graphical and command line interfaces customizable and
configurable, with no need of programming. This is the
case for the creation of the control system and graphical
interfaces. Macros are a special case that is covered in the
next section.

SEQUENCER, MACROS, MOTORS AND
SCANS

At the heart of the Sardana system is the standard
catalogue of reusable procedures (macros) and sequences,
which offers also templates and tools for creating and
maintaining a user repository of macros. Examples of
standard macros are ct, for acquiring with all channels
defined during the specified time, ascan, a2scan, dscan,
mesh, etc, for the different n-dimensional types of scans.
Typically a scan is a sequence of motions of arbitrary
movables and acquisitions of the experimental channels
during a time and intervals defined.

The names of the standard macros and the syntax have
been designed to follow SPEC conventions. SPEC is well
known in the scientific community, and this is crucial to
ease the learning process of users. Sardana and SPEC
could coexist and interact in the same installation,
mitigating this potential shortcoming.

As we introduced in the previous section, the macros
are executed in a central process, called Macroserver,
implemented as a TANGO device. Typically there is one
Macroserver in a Sardana installation, although there can
be more than one if the application requires it.

Macros are Python classes (Figure 1). They are
executed and sequenced in the Macroserver, and can be
also edited and debugged under its supervision. Macros
can be executed from a Command Line Interface (CLI)
built on top of IPython, or from the graphical interface. It
is also common to start development as a Python script,
which progressively incorporates more functionality. At
any point, this is easily converted into a macro for a better
integration into the control system.

Sequences are batches of macros. They can be created
from the graphical user interface and are also
administered in the history and favourites.

Figure 1: (a) Definition of a macro to set limits of a given
motor. (b) Execution of a macro from the command line
interface. Question mark shows the documentation.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

Software Technology Evolution
THPHA169

1821

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The concept of scan and the extension to continuous
scan is a key feature in a Beamline control and data
acquisition system. Traditionally, a continuous scan
needed a configuration “ad hoc” for one particular axis,
with a lot of hardware involved to count encoder or motor
pulses and generate external triggers for the channels
involved. The generalization of this type of scans is
strategic in all synchrotrons and potentially in any other
laboratory. A generic continuous scan framework
provides the flexibility of step scans in a continuous and
synchronized data acquisition, allowing time-resolved
experiments, or in any case speeding up the experiments
and reducing the software and motion overheads. The
complexity resides in using any arbitrary combination of
movable elements, experimental channels, and detectors,
generating the required triggers and evidently, allowing
the coexistence of slow interpolated software-triggered
channels, pseudocounters and pseudomotors with
hardware triggered fast channels and readout encoders
[10] [11].

HUMAN MACHINE INTERFACES
The graphical layer is Taurus[12]. It is written in

Python and based on Qt. The Command Line Interface is
built on IPython and makes extensive use of Taurus as
well. It is known as SPOCK. As mentioned, in order to
facilitate the learning process and although they do not
share any code, the appearance, syntax, and the standard
macros names, have been chosen similar to SPEC.

Sardana is truly multi-client, so several user interfaces
are managed simultaneously; graphical interfaces, text
interfaces running in different processes or locations, or
even the command line interface embedded in the GUI.

Fully functional GUIs for controlling equipment can be
quickly created in Sardana without having to write any
code, but just configuring the different components of a
standard generic GUI [13]. In the cases where a more
specialized GUI or widget is required, it can be created
using the Qt designer, for which a plug-in providing a
catalogue of Taurus widgets is available.

The principal example is the user interface to the

control system of a Beamline, which is typically Sardana
installation with at least a Device Pool and a Macroserver.
The generic GUI provides of-the-shelf panels for
managing macros and sequences, as well as standard
panels associated with the instruments defined in the
Device Pool. Often the GUI includes also custom widgets
and synoptics for visualizing the system. The layout of
the GUI can be configured in different perspectives,
allowing switching from different panel arrangements
suited for different applications.

DATA MANAGEMENT
Data management covers several aspects, as shown in

Figure 2. Data is the result of an experiment, which must
be complete, and must contain the necessary metadata for
the data analysis to succeed. Besides, data sets could

eventually be completed on-line or modified off-line to
contain analysed and processed data. Sardana uses a
modular system for producing outputs. It natively
supports the HDF5 – NeXus data format for the
experimental data, but it can also write to other formats
such as SPEC files or DESY´s FIO format for backwards
compatibility. Data sources are typically the Macroserver
and the Device Pool, although it can be any component
present in the control system. The control system offers
also other possibilities, like relational databases for
infrastructure and historical data, although this is not yet
fully integrated in Sardana.

SPEC files have a plain-text format (ASCII). They
store the scan results, with some metadata such as motor
positions, and the set of motors and experimental
channels intervening in the scan. One-dimensional (1D)
data could also be archived in ASCII format. This is not
the case for two-dimensional (2D) data, which require
extra binary files, like EDF (ESRF Data Format). HDF5-
NeXus binary files on the other hand, can contain all data
and metadata regardless of dimensionality in a single
compact file, which complies with well-documented
standard application definitions and which can be
accessed with generic and widely supported HDF5
libraries and tools. The data files in both HDF5 or SPEC
can be then analyzed with different software packages
such as PyMCA [14] or fit2d [15].

Specific data recorders can be added for different data
files or applications. In this sense, specific data recorders
manage specific application definitions in NeXus files.
Moreover, Sardana can use several recorders
simultaneously, and therefore write the data in different
formats at the same time (Figure 2).

The intercommunication between the different
components is assured by TANGO itself, in few cases
JSON-encoded (JavaScript Object Notation) for complex
structures.

Figure 2: Sardana is driven by the data acquisition,
managing data and metadata for data analysis and on-line
information for control.

THE CORE
The core of Sardana manages the access to the

hardware. It is implemented as a TANGO device, called
“Device Pool”. It normally runs altogether with the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

THPHA169
1822

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

“Macroserver device” in the same computer or even in the
same process, although this is not mandatory. Large
Installations may have several Device Pool instance that
can be accessed from the Macroserver. The Device Pool
provides access to the hardware in an efficient way.
Sardana provides different abstractions. The first
distinction comprises two kinds: Movable elements such
as motors or pseudomotors and experimental channels,
like, counters/timers, 0D (zero dimensional), 1D, or 2D
detectors. Movable elements are typically motors
associated to a physical axis, but they can also be
associated to other devices (able to scan), like power
supplies or temperature controllers. Counter/timers are
scalars that implement the concept of integration or
accumulation over a defined interval, typically
corresponding to a detector exposure. 0D channels
represent the type of scalars whose magnitude is
intrinsically normalised by time (electric current, photon
flux, pressure, temperature, etc.), so their values are
averaged over the measurement interval. The Device Pool
provides automatic averaging operations for controllers
that only implement signal sampling, as well as the
optional parameter integration over time in order to
simplify arithmetic with accumulating counters. 1D
devices generate data that can be represented by vectors,
usually coming from detectors such as Position Sensitive
Detectors (PSD), Multi Channel Analyzers (MCA) or
other dispersive techniques, which measure in many cases
the spectral dependence (or decomposition) of a
magnitude. 2Ds [16] or two-dimensional data is typically
associated with imaging detectors, such as CCD/CMOS
cameras, pixel array detectors or frame grabbers. Besides
movable and experimental channels, there are other
additional types, useful for building interfaces and in
general control systems. Those are for example,
communication channels, enumerated scalars called I/O
registers, or complex objects such as sample changers.

The elements are organized in controllers. A controller
has one or more elements. The elements in a controller
typically share some functionality. For example, a motor
controller has often many motors or axes associated.
Those axes can be started synchronously by one single
command. So the controller can exploit this feature with
two main goals: to optimize the access to the hardware
and to push multi-device synchronisation towards its
minimum latency and jitter. A movable can be of many
types, such as a stepper motor, a DC motor, a piezo linear
actuator, etc. Different kind of movable elements,
different manufacturers or different models offer different
functionalities. The device pool handles this diversity,
provides homogeneous interfaces, optimizes the
communication and handles the synchronization.

Sardana offers also complex controllers and elements,
which combine physical elements and calculations. For
example, the energy is often calculated as a result of
Grating pitch or Bragg angles combined with the position
of mirrors and crystals, the gap and offset of the slits are
often the result of the position of four physical blades, the
height, and pitch of a table are a function of the position

of the legs. These axes are called pseudomotors. In the
same way, occasionally, a calculation from several
channels is needed: for example, a combination of two
scalar counters with one encoder position. The result
would be another channel integrated in plots, and data
files as any other experimental channel. This is called a
pseudocounter.

Thus, the Device Pool manages comprehensively the
access to the hardware, handling the interdependencies
between logical and physical channels, synchronization,
and concurrent access of the different components.

Although the Device Pool and the Macroserver can be
in different process and run in different computers, for
small installations they are usually two devices in the
same process. They are complementary to each other.
Graphical interfaces can have direct access to the Device
Pool, but other user interfaces, for example SPOCK, go
only through the Macroserver. A Macroserver has a
number of client connection points called “Doors” which
are also TANGO devices. Each client uses a dedicated
Door to request the execution of macros by the
Macroserver. They were designed to run the macros in
independent threads. This feature allows the parallel
execution of macros on separate Doors, provided that no
conflict exists due to macros modifying (that is, writing
on) the same hardware device.

A small installation has a Sardana server, which has
only one Device Pool device, only one Macroserver
device and one or more Door devices associated to it.

Sardana has run up to now integrated in a TANGO
installation. Interfaces with other systems are under
development and tests. EPICS, SPEC, or even TACO (the
predecessor of TANGO), can be interfaced from Sardana,
either from the Device Pool as an integrated interface to
the hardware in order to be accessed from macros, or on
the upper level as a scheme in Taurus for simple channel
connections from graphical interfaces.

COLLABORATION
The Sardana code was migrated to a public

SourceForge repository in 2011. The Taurus code, very
popular in the Tango community, was moved to a
separated repository to simplify those numerous uses that
did not need the Device Pool-Macroserver parts. In 2016,
Sardana and Taurus migrated to GitHub. The pull-
requests and code-review workflows proved to be more
convenient for a growing collaborative community[17].
Inspired on the Debian Enhancement Proposals (DEP),
the SEPs and TEPs (Sardana and Taurus Enhancement
Proposals) define the workflows for promoting new
features. A number of SEPs have been successfully
completed such as the generic continuous scan (SEP6) or
the integration of HKL reciprocal space coordinates
(SEP4). Automated tests, test-driven-development and
continuous integration / continuous delivery paradigms
were as well introduced. The documentation is
continuously updated and available on the Read-The-
Docs platform. Two releases per year are scheduled. All
these efforts on standardization and openness allowed

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

Software Technology Evolution
THPHA169

1823

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Sardana/Taurus to become a collaboration with four
members-contributors, a growing user community –some
of them spontaneous contributors as well – and where up
to now, the memorandum of understanding was not
needed[18].

CONCLUSIONS AND FUTURE
PERSPECTIVES

Sardana was initially developed at ALBA to overcome
some of the limitations of the existing SCADA solutions.
The industrial solutions miss scientific hardware and
functions, and the scientific solutions like SPEC, Labview
or Matlab, may lack to some extend of scalability,
concurrency and arbitration. Sardana, is installed and
running in the particle accelerators and Beamlines at
ALBA. It is in operation in nine Beamlines at DESY, and
all accelerators and Beamlines in MAXIV and SOLARIS.
There are still a considerable number of features pending,
and a great effort is still needed in this field. But Sardana
is following its schedule, and several other labs and
private companies are using it or have already expressed
their interest. Due to the open source nature of the project,
the Sardana development is likely to gain considerable
momentum. The latest release, published in of 2017,
improves its performance, as well as the experiment
configuration, plotting and access to data files. It also
natively integrates continuous scans. Looking ahead to
the upcoming versions, the efforts of the community will
be focused among others in the configuration tools, full
integration of 2D detectors, and continuous scans
frameworks with complex movements and trajectories.

The configuration tools are crucial for gaining users
among small labs, making the configuration and access to
hardware catalogues simpler and intuitive.

ACKNOKLEDGMENTS
Many people made important contributions to this

project. In particular the authors would like to thank J.
Ribas, R. Suñé, on early versions of Taurus and PyTango,
F. Picca at Soleil for his contribution on the H.K.L
library, packaging and beta tests. In addition, the authors
would like to thank A. Götz, from the ESRF and N.
Leclercq, from Soleil for their comments and valuable
feedback. Thank you also to all members of the
Computing Division team at ALBA, all four sections,
Controls, Electronics with O. Matilla, IT-Systems with A.
Pérez and Management Information Systems with D.
Salvat. Finally the authors would like to thank the user
community for their understanding, their patience,
continuous feedback and contributions to the project.

REFERENCES
[1] D. Fernández-Carreiras, D. Beltran, T. Coutinho, G.

Cuní, J. Klora, O. Matilla, R Montaño, C. Pascual-
Izarra, S. Pusó, R. Ranz, A. Rubio, S. Rubio-
Manrique, R. Suñé. “The design of the ALBA
Control System; A cost-effective distributed

hardware and software architecture”, in Proceedings
of ICALEPCS’11, p1318. Grenoble. France.

[2] J-M. Chaize, A. Götz, W-D. Klotz, J. Meyer, M.
Perez, E. Taurel, “Tango. An object oriented control
system based on Corba”, in Proceedings of
ICALEPCS’99, Trieste, Italy.

[3] TANGO website, http://www.tango-
controls.org/.

[4] EPICS website: http://www.aps.anl.gov/epics

[5] H. Milcent, E. Blanco, F. Bernard, P. Gayet,
“UNICOS: An open framework”, in Proceedings of
ICALEPCS’09, Kobe, Japan.

[6] SPEC website,
http://www.certif.com/content/spec

[7] T. Coutinho et al., “SARDANA: The software for
building SCADAS in Scientific Environments”, in
Proceedings of ICALEPCS’11, Grenoble, France.

[8] Sardana doc: http://www.sardana-scada.org.

[9] Z. Reszela, G. Cuni, D. Fernández-Carreiras J.
Klora, C. Pascual-Izarra, T. Coutinho, “Sardana- a
python based software package for building
scientific SCADA applications”, in Proceedings of
PCaPAC’14, Karlsruhe, Germany.

[10] D. Fernández-Carreiras, F. Becheri, T. Coutinho, G.
Cuní, R. Homs, G. Jover-Mañas, J. Klora, O.
Matilla, J. Moldes, C. Pascual-Izarra, Z. Reszela, D.
Roldan, S. Rubio-Manrique, X. Serra.
“Synchronization of motions and detectors and
continuous scans as a standard data acquisition
technique”, in Proceedings of ICALEPCS’13, San
Francisco, USA.

[11] Z. Reszela, F. Becheri, G. Cuní, C. Falcón-Torres, D.
Fernández-Carreiras, R. Homs-Puron, J. Moldes, C.
Pascual-Izarra, R. Pastor-Ortiz, D. Roldán, M.
Rosanes-Siscart, “Sardana based continuous scans at
ALBA. Current Status”, these proceedings.
Proceedings of ICALEPCS’17, Barcelona, Spain.

[12] C. Pascual-Izarra, et al., “Taurus big and Small:
From particle accelerators to Desktop labs”, these
proceedings. Proceedings of ICALEPCS’17,
Barcelona, Spain.

[13] C. Pascual Izarra et al. “Effortless creation of
Control & data acquisition graphical user interfaces
with Taurus. Proceedings of ICALEPCS’15,
Melbourne, Australia.

[14] V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J.
Susini, “A multiplatform code for the analysis of
energy-dispersive X-ray fluorescence spectra,
Spectrochim”, Acta Part B 62 (2007) 63-68.

[15] A. P. Hammersley, “FIT2D: An Introduction and
Overview'', ESRF Internal Report, ESRF97HA02T.
1997.

[16] A. Homs, L. Claustre, E. Papillon, S. Petidemange,
“LIMA: A generic Library for High throughput

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

THPHA169
1824

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

image acquisition”, in Proceedings of
ICALEPCS’11, 676, Grenoble, France.

[17] Z. Reszela, et al., “Bringing Quality in the control
software delivery process”, in Proceedings of
ICALEPCS’15, Melbourne, Australia.

[18] C. Pascual-Izarra, et al. “Community driven
scientific software projects: Lessons Learned on
Tools and Practices”, in Proceedings of NOBUGS
2016, Copenhagen, Denmark.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA169

Software Technology Evolution
THPHA169

1825

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

