
APPLYING MODEL CHECKING TO CRITICAL PLC APPLICATIONS:

AN ITER CASE STUDY

B. Fernández∗, D. Darvas, E. Blanco, CERN, Geneva, Switzerland

Gy. Sallai, BME, Budapest, Hungary

I. Prieto, IBERINCO, Madrid, Spain

G. Lee, Mobiis Co. Ltd., Seoul, South Korea

B. Avinashkrishna, Y. Gaikwad, S. Sreekuttan, Tata Consultancy Services, Pune, India

R. Pedica, Vitrociset s.p.a, Rome, Italy

Abstract

The development of critical systems requires the applica-

tion of verification techniques in order to guarantee that

the requirements are met in the system. Standards like

IEC 61508 provide guidelines and recommend the use of

formal methods for that purpose. The ITER Interlock Con-

trol System has been designed to protect the tokamak and

its auxiliary systems from failures of the components or in-

correct machine operation. ITER has developed a method

to assure that some critical operator commands have been

correctly received and executed in the PLC (Programmable

Logic Controller). The implementation of the method in a

PLC program is a critical part of the interlock system. A

methodology designed at CERN has been applied to verify

this PLC program. The methodology is the result of 5 years

of research in the applicability of model checking to PLC

programs. A proof-of-concept tool called PLCverif imple-

ments this methodology. This paper presents the challenges

and results of the ongoing collaboration between CERN and

ITER on formal verification of critical PLC programs.

INTRODUCTION

ITER aims to be the first fusion device that produces net

energy. To achieve this goal, thousands of engineers work on

building the world’s largest tokamak to prove the feasibility

and pave the path to commercial production of fusion-based

electricity. This unique installation has many associated

safety risks and the Interlock Control System is in charge

of the supervision and control of all the ITER components

involved in the instrumented protection of the tokamak and

its auxiliary systems. This system implements the interlock

functions to protect ITER from incorrect operation and other

hazards. The architecture of the Interlock Control System

is based on Programmable Logic Controllers (PLCs) on the

control layer and WinCC OA SCADA (Supervisory Control

and Data Acquisition) on the supervision layer..

Under certain exceptional situations, like commissioning

or maintenance, the interlock functions have to be disabled

or some interlock signals shall be masked or forced in the

interlock control system. This has to be performed remotely,

via the SCADA system. The SCADA system also ensures

that the operator will always be aware of the presence of

any active masked interlock function. The ITER developers

∗ Corresponding author. E-mail: borja.fernandez.adiego@cern.ch

have designed and implemented the HIOC (High Integrity

Operator Commands) protocol to ensure that these critical

commands sent from SCADA are properly received by the

PLCs.

The PLC code that implements the HIOC mechanism is a

critical part of the system. For this reason, in addition to the

traditional testing techniques, model checking has been ap-

plied to verify the behaviour of the program according to the

given specifications. Model checking is a formal verification

method that takes the model of a system and a formalised

requirement, and checks whether the requirement is satisfied

by the modelled system with mathematical precision.

Motivation

The ultimate goal of the presented work is to verify the

PLC program implementing the HIOC protocol, to prove that

it satisfies its specification. The verification project is still in

progress, however, we can already report on our experience

about how formal verification can reveal implementation

faults, flaws in the protocol, or to help understanding the

precise requirements.

The goal of this CERN-ITER collaboration is to apply

the novel verification technologies developed at CERN to

improve the reliability of the HIOC protocol’s PLC imple-

mentation to be used by ITER.

Related Work

The IEC 61508 standard on functional safety provides

guidance for developing an application and communica-

tion between the components. The protocols available in

WinCC OA for communication with the PLCs do not pro-

vide the required level of integrity. The standards, such as

IEC 61784, discuss the use of “black channels” for critical

applications, i.e. providing a safe communication channel by

adding various countermeasures without depending on the

reliability of the underlying (non-safe) channel. The HIOC

protocol follows this philosophy.

Formal verification of PLC programs is not part of the

industrial state-of-the-practice yet. However, more and more

projects aim to support and improve the development of

industrial control software by complementing the traditional

methods with formal verification [1,2]. CERN is committed

to push the affordable formal verification of PLC programs

forward, which lead already to successful verification case
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studies where widely-used PLC framework block libraries

[3] or logics of safety PLCs [4] were verified.

HIGH-INTEGRITY

COMMUNICATION PROTOCOL

The goal of the HIOC communication protocol is to pro-

vide a safe, reliable communication between the WinCC OA

SCADA and the Siemens PLCs for overriding certain signals

or interlocks. In general terms, this protocol transfers the

information whether a given signal shall be masked or not.

In the design of the protocol, the communication medium is

regarded as a black channel (according to the IEC 61508-2

standard), meaning that no guarantee can be provided for

the communication channel, moving the responsibility for

the safety integrity to the PLC and the operator. The latter

is responsible to manually verify the codes presented on the

SCADA screens based on written operation procedures.

Mechanism. Each PLC is responsible for one Boolean sig-

nal (e.g. an interlock or the position request of a valve) that

can be overridden, i.e. a pre-defined value can be forced

instead of the value computed by the logic. The PLCs are

identified by their unique controller IDs.

The HIOC protocol is a three-step communication pro-

tocol between the PLCs and the SCADA, meaning that a

successful communication sequence consists of three mes-

saging steps. In each step, first, the SCADA sends a message

to the PLC, then the PLC responds to the SCADA. The dif-

ferent steps of the communication are identified by a number,

called flag, included in the messages.

A message between the SCADA and the PLC (indepen-

dently from the direction) consists of three numbers:

• The controller ID, identifying the PLC targeted by the

action,

• A flag, identifying the step of the communication se-

quence, and

• A message ID, identifying the signal to be overridden

(or released).

Each override command has three identifiers defined.

These identifiers shall be sent in the correct order (each

of them corresponds to one of the steps) to successfully

override a signal. These identifiers are included in the mes-

sage ID field of the message. Similarly, three identifiers are

defined to release an override. The PLC will successfully

override a signal if the following conditions are satisfied:

• The controller ID matches the controller ID of the cur-

rent PLC in all three messages,

• The flags correspond to the successive steps of the

protocol, in the correct order (denoted in this paper by

STEP1, STEP2, STEP3), and

• The message IDs match the three defined identifiers for

overriding (releasing), matching the step described by

SCADA PLC

(1) CTRL_ID, flag=STEP1, message=OVR1

(2) CTRL_ID, flag=STEP1-ACK, message=OVR1

(3) CTRL_ID, flag=STEP2, message=OVR2

(4) CTRL_ID, flag=STEP2-ACK, message=OVR2

(5) CTRL_ID, flag=STEP3, message=OVR3

(6) CTRL_ID, flag=STEP3-ACK, message=SUCCESS

Figure 1: Communication sequence successfully overriding

a signal

the flag (denoted in this paper by OVR1, OVR2, OVR3

for overriding).

Furthermore, a timer is also included in the PLC program

to ensure that the verification process is only successful if it

is completed within a predefined time window.

This communication sequence is illustrated in Figure 1.

If a message received by a PLC contains a wrong con-

troller ID, the message is discarded. If the flag or the message

identifier does not match the expected next value, the cur-

rent communication sequence is aborted and the SCADA is

notified about this.

Specification. The requirements and high-level architec-

ture of the HIOC protocol is defined in a textual format, with

flowcharts and detailed examples for the key parts of the

protocol. This informal specification was the main source of

the requirements to be verified. However, due to the inherent

ambiguity of natural text and also because the specification

does not discuss the low-level PLC-specific implementation

details, an intensive discussion between the designers of the

protocol, specifiers and verifiers was required.

Implementation. The target of this verification is the PLC

program of the HIOC protocol, thus we introduce this part

in more detail. Due to various constraints, the HIOC was de-

signed as an interconnection of two blocks: a fail-safe func-

tion block (HIOC_SFT) written in Siemens CFC (Continuous

Function Chart), and a standard function block (HIOC_STD)

written in Siemens SCL. The HIOC_STD block is responsible

for handling the messages received from the SCADA and

to send the appropriate responses. The fail-safe HIOC_SFT

block performs the comparison of the expected and received

values, and computes whether the signal shall be masked or

not, based on the communication in the past.
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SYSTEM MODELLING AND

REQUIREMENTS FORMALISATION

This section overviews the workflow and toolchain used

for the formal verification of the HIOC protocol, and the

details of modelling and requirement formalisation.

PLCverif: Model Checking Methodology for PLC

Programs

PLCverif is a tool for formal verification of PLC pro-

grams [5]. The methodology implemented by PLCverif is

designed to be general so several PLC languages and verifi-

cation tools can be included in it. The verification workflow

(shown in Figure 2) is based on the source code of PLC

programs. Currently, the Siemens SCL and STL languages

are supported by PLCverif. Using the export capabilities of

the Siemens development environments, programs written

in CFC, LAD and FBD languages can also be checked.

The requirements are described either using requirement

patterns or assertions. A requirement pattern is a fixed

English sentence with certain placeholders to be filled by the

user. An assertion in this context is a Boolean expression

included in the source code as a special comment. This

expression shall be true every time the given part of the

program is executed.

The source code of the PLC program is translated into an

intermediate representation, based on control flow graphs

(CFG). This intermediate representation – together with the

requirements formalised using the patterns – can then be

used to generate automaton-based representation of the PLC

program for various general-purpose model checkers, such

as nuXmv. Alternatively, the intermediate representation

can be the source for generating structured programs for

software model checkers [6], such as CBMC that works

on annotated C code and checks whether all assertions are

always satisfied in the code. This alternative was recently

added to the methodology to evaluate the performance of

software model checkers for PLC programs.

Based on the PLC code and the requirements provided by

the user, PLCverif will automatically generate and reduce the

necessary intermediate models, execute the chosen external

verification tools, and provide a verification report. This ver-

ification result will describe whether the given requirement

is satisfied by the checked program, and if not, an under-

standable counterexample is also provided, exemplifying a

violation of the requirement.

PLC Program Modelling

As previously discussed, the HIOC protocol’s PLC imple-

mentation consists of two interconnected blocks: HIOC_SFT

and HIOC_STD. Both were given in SCL format for verifica-

tion. Parsing HIOC_STD in PLCverif did not pose any major

challenge, however the HIOC_SFT block, originally written

in CFC relies on many external function blocks, such as

logic operation blocks (e.g. AND4), comparison blocks (e.g.

F_CMP_R), data conversion blocks (e.g. F_R_FR), flip-flops

(e.g. F_RS_FF), etc. These blocks (or their simplified ver-

sion in some cases) had to be re-implemented in SCL based

on the documentation available from Siemens [7].

After having the complete implementation parsed, the

whole program is automatically translated either to an

automaton-based intermediate format that is later suitable for

general-purpose model checking (e.g. by using the nuXmv

tool), or a verification-oriented C representation can also be

generated that can be checked by specialised software model

checker tools (such as CBMC).

Depending on the requirements, the user may want to

analyse only the HIOC_SFT block, or only the HIOC_STD

block independently. In other cases, the two blocks shall

be analysed together, as they are connected in the real im-

plementation. As both the HIOC_SFT and HIOC_STD blocks

have many inputs and outputs to connect to the other block,

checking the two blocks together as a system may be easier

due to the reduced number of requirements. In addition, as

the specification is written for the two blocks together, spec-

ifying their joint behaviour is more feasible, thus most of

the verifications were performed on the two interconnected

blocks.

The SCL representation of the two blocks and their in-

terconnections is about 1,500 lines long, containing more

than 150 variables, out of which about 50 are non-Boolean

variables.

Requirement Formalisation

To formalise the requirements, we have used both asser-

tions and requirement patterns. Assertions can be regarded

as special, simple requirement patterns. The main practical

difference is that as the requirement patterns have a higher

expressive power, certain model checkers (e.g. CBMC) can

only be used to check assertions, not requirement patterns.

In some cases, we have formalised non-existent require-

ments to gain more knowledge about the implementation

via the provided counterexamples. For example, the require-

ment “It is impossible to successfully override a given func-

tion.” is obviously not expected to be satisfied. However,

the violation described by the counterexample is an example

(so-called witness) of a successful interlock masking.

VERIFICATION RESULTS

This section presents two representative verification cases

to illustrate how model checking helped to improve the qual-

ity of the HIOC implementation and the understanding of

its specification.

Pattern-based verification. The first representative verifica-

tion case is meant to check that a given step of the HIOC pro-

tocol is executed correctly. In this case the checked property

expressed that the response to a message with flag=STEP1

shall be flag=STEP1-ACK, provided that the received mes-

sage is the expected message=OVR1, as shown in Figure 1.

Obviously, similar verification cases can check the correct

behaviour in case of receiving incorrect messages (when

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA161

THPHA161
1794

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



CFC code

LAD code

FBD code

SCL code

STL code

Requirement

pattern

Intermediate model

(CFG)

Temporal logic

requirement
nuXmv model

CBMC input

(Annotated C code)

Verification result

CBMC execution

Model checking

Reductions

Figure 2: Formal verification workflow of PLCverif

Table 1: Counterexample

Variable PLC Cycle 1 PLC Cycle 2

Inputs

CTRL_ID (SCADA to PLC) IDLE ID1

FLAG (SCADA to PLC) IDLE STEP1

MESSAGE (SCADA to PLC) IDLE OVR1

fault1 FALSE FALSE

fault2 FALSE FALSE

enabled FALSE TRUE

parameter1 FALSE FALSE

parameter2 FALSE TRUE

parameter3 TRUE TRUE

Outputs

FLAG (PLC to SCADA) IDLE IDLE

the communication sequence shall be aborted), or to check

behaviour in later steps.

This requirement was formalised using the verification

patterns provided by PLCverif, and the verification was done

using the nuXmv tool. The first verification results were

obtained in only 29 seconds. However, this needed both the

automated reductions built in PLCverif, and some manual

simplifications of the code under verification (e.g. reducing

the size of integer data types).

Even though the requirement was expected to be satis-

fied by the developers, the verification report provided by

PLCverif clearly showed that the PLC program was not com-

plaint with the specification. We have quickly realised that

the requirement did not consider the case when the PLC

receives – and discards – a message that targets another PLC.

We have also found out that this expected, general behaviour

can be altered by various communication fault signals. Also,

the override protocol can be disabled, in which case the re-

quirement does not have to be satisfied. While so far this did

not reveal any implementation faults, it helped the specifiers

and verifiers to understand more deeply the requirements

and the various corner cases of the protocol.

After excluding all these special behaviours, the verifica-

tion of the formalised requirement still showed a potential

violation. The counterexample for this violation is illustrated

in Table 1. The values in italic are symbolic values for illus-

tration purposes. The real variable names were altered to

facilitate the understanding. The root cause of this deviation

is currently under evaluation by the domain experts. If it

reveals a new special behaviour that needs to be excluded,

the verification will continue with a more precise formal

requirement.

Using similar approach, we were able to identify various

discrepancies between the implementation and the specifi-

cation in earlier stages of the HIOC protocol development,

which were consequently fixed.

Assertion-based verification and witness generation. The

other main group of verification cases used simpler require-

ments (formalised using assertions), however more precise,

unreduced representation of the PLC program. Some of the

included assertions were expressing real requirements, such

as the signal can only be overwritten if a “successful overrid-

ing” message was sent before by the PLC. Other assertions

were only used to generate witnesses of the key functionality,

as discussed earlier.

The assertions were included in the SCL code, then

PLCverif generated an annotated C code representation.

This was fed into the CBMC verification tool, which was

able to generate counterexamples in a couple of seconds,

even though no reductions were performed on the PLC pro-

gram or the intermediate representation in this case. The

counterexamples produced in this case are similar to the

one presented in Table 1, however they typically involve

several consecutive PLC cycles, thus the table contains more

columns with different variable values.

These counterexamples demonstrated the possibility of

various unexpected execution traces. Some of them showed

the possibility of overriding the critical signals even if the

some of the SCADA to PLC messages were not received in

correct order, or if they were overlapped by other, potentially

erroneous messages. Other counterexamples indicated the

possibility of ignoring an abort requested on the SCADA

side, and still perform the initiated operation.

It has to be noted that the SCADA implementation of

the HIOC protocol was not part of the verification, thus the

various checks implemented in the SCADA layer are not

considered. However, this is consistent with the black chan-

nel assumption. Now it is up to the specification owners

and developers to analyse the counterexamples and to de-

cide whether they are (1) manifestations of real development

faults, (2) caused by incorrect or incomplete requirements

and/or specification, or (3) due to imprecisions in the verifi-

cation workflow.

In case of non-trivial protocols, such as HIOC, verifica-

tion of correctness using only assertions does not seem to

be feasible. To describe the complete set of requirements,

the larger expressiveness of requirement patterns looks nec-

essary. However, this method is an easy-to-use, inexpensive
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way to generate interesting execution traces that can reveal

unintended behaviours.

CONCLUSIONS

Although the complete formal verification of the HIOC

protocol is still in progress, model checking has shown that

it can be a valuable contribution to the general toolset of

industrial controls engineers and PLC developers. This is

especially true for safety-critical uses, where the correct

behaviour is extremely important.

Formal verification aids the development process in vari-

ous ways:

• First of all, a formal proof of correctness ensures the

lack of development faults. It is typically difficult to

achieve that level due to various reasons. As we are re-

lying on various external tools (model checkers, compil-

ers, development frameworks, etc.), also due to the po-

tential mistakes in understanding the requirements, the

absolute certainty of correctness is very rarely achiev-

able. In case of the HIOC protocol, we are not claiming

yet complete absence of development faults, however

we plan to continue this work until all our formalised

requirements become satisfied.

• Model checking can help to better understand the pro-

gram under development. Even if a requirement does

not express some behaviour that must be satisfied, the

counterexample given to it may help to explore interest-

ing behaviours. For example, checking that the HIOC

protocol cannot override a signal successfully (that is

obviously not a real requirement), the counterexamples

will show evidences how the signal can be masked. By

constraining the counterexample (i.e. changing the re-

quirement such that the trivial violations are excluded)

interesting, peculiar behaviours can be found.

• Last, the need to formally express the requirements

inherently helps to understand the requirements pre-

cisely. Very often model checking necessitates a long

discussion between the specifier, developer and veri-

fier. Model checking can reveal that a requirement that

sounds sensible may exclude many of the corner cases,

and these have to be gradually understood by all parties

involved.

The verification of the HIOC protocol revealed suspicious

corner cases where the implementation does not match the

specification. Now it is the duty of the domain experts and

developers to understand the implications and to improve the

implementation or to make the specification more precise.

We are going to continue this work until the results are

convincingly demonstrating the good quality and correct

behaviour of the HIOC protocol.
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