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Abstract

The Brazilian Synchrotron Light Laboratory (LNLS) is

in the final stages of developing an open-source BPM sys-

tem for Sirius, a 4th-generation synchrotron light source

under construction in Brazil. The system is based on the

MicroTCA.4 standard comprising AMC FPGA boards car-

rying FMC digitizers and a CPU module. The software is

built with the HALCS framework [1] and employs a service-

oriented architecture (SOA) to export a flexible interface

between the gateware modules and its clients, providing

a set of loosely-coupled components favoring reusability,

extensibility and maintainability. In this paper, the BPM

system will be discussed in detail focusing on how specific

functionalities of the system are integrated and developed

in the framework to provide SOA services. In particular,

two domains will be covered: (i) gateware modules, such

as the ADC interface, acquisition engine and digital signal

processing; (ii) software services counterparts, showing how

these modules can interact with each other in a uniform way,

easing integration with control systems.

INTRODUCTION

Many particle accelerators and high-energy physics exper-

iments are based on a distributed industrial control system,

such as: EPICS [2], Tango [3], DOOCS [4]. In order to

fulfill the requirements of such demanding installations in

terms of scalability, decoupling, reliability and evolution,

their foundation lies on a two or three-tier architecture, effec-

tively decoupling the so called Front-End Controller (FEC)

layer, Client Application layer and, in the case of a three-tier

architecture, Middle-Layer Services layer.

Hence, to accomplish these goals, two concepts are gen-

erally employed: (i) an entity that abstracts a given func-

tionality, being either an actual equipment or an abstract

computing service; (ii) a contract, specifying how to com-

municate with this entity in order to explore that exported

functionality.

Examples of the entity concept are clear by looking at

the existing control system toolkits, such as: Input-Output

Controller (IOC) for EPICS and Device Server for Tango

and DOOCS. As for the contract concept, EPICS defines

the Channel Access protocol for EPICSv3 and the PVAccess

protocol for EPICSv4, Tango establishes the contract on

top of existing Message-based middleware technologies like

ZeroMQ [5] and CORBA [6], and lastly, DOOCS uses the

ONC/RPC protocol [7].

As a natural advancement of the underlying modern con-

trol system architecture, many applications have been de-

veloped by following what is called Service-Oriented Archi-
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tecture (SOA) principles [8] [9], such as: loose-coupling

between parts of the system, a standard contract between

the parts, reusability, service abstraction, service autonomy,

among others. Examples of this can be seen in [10–15].

By using the same SOA principles over which high-level

applications have been successfully employed over the years,

development and integration of systems using modular plat-

forms like MicroTCA [16], can be leveraged by the use of

the same approach. Specifically, but not limited to, applica-

tions that make use of FPGA chips can benefit a lot from

this approach, so that even micro-modules can be abstracted

as an entity and controlled by a common contract, favoring

reusability and maintainability.

In the next sections, the tools that provide this abstrac-

tion, as well as the benefits and challenges, are going to be

discussed.

SOA ARCHITECTURE FOR LOW-LEVEL

SYSTEMS

Traditional SOA principles are based on ideas that favor

independent design and evolution of each part of a system.

In many cases, however, low-level systems controlling an

embedded or external hardware device lack these features,

even though they tend to follow a modular design philosophy.

The reason behind this might be due to the intrinsic tightly-

coupled characteristic of these systems and the difficulties

in achieving the end metrics, namely: latency of operations,

number of operations per second and system scalability.

Taking full advantage of the SOA principles in this case

is harder, but not intangible, as the key idea is to dissociate

the performance-driven part of the system, in which a more

tightly-coupled design might be inevitable, from the actual

architecture of the system, in which the actual properties and

the interrelationships between the system’s entities are de-

scribed. The former generally needs to use a more complex

protocol and abstractions, while the latter has the freedom to

use SOA principles to increase modularity, maintainability

and reuse.

Topology for Low-Level Systems

In a generic way, low-level systems, particularly FPGA-

based with a CPU attached to it (either via PCIe, Ethernet

or an internal bus), can be described in two parts. The first

one is composed by the specific hardware to perform the end

application, along with its peripherals, FPGA, ADCs, DACs

and others. The second part is denoted by a controlling agent

(typically a software composing a FEC) interacting with the

hardware and providing an abstraction to other systems.
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Figure 1 shows a generic hierarchical description of the

hardware part and Fig. 2 depicts the corresponding SOA-

based software for controlling that hardware.

Figure 1: Generic Hardware Architecture.

Figure 2: SOA-based Software Architecture.

The ability to structure the application by means of small

abstract components and a stable protocol between them also

favors the evolution of the software and can ease new design

developments. As shown in Fig. 1, the hardware architecture

is generally composed of a communication interface, by

which the software can interact with it, a protocol conversion

layer, to translate between the interface and an internal bus

protocol, and a set of peripherals.

By having each small peripheral in hardware matching

one service unit in software, as shown in Fig. 2, it can be

thought as a composable abstraction layer, in which the

individual services provide a specific functionality and can

be aggregated to form more complex services.

Oftentimes, some inter-service dependencies occur in the

design. To solve this, an Intra-Controller protocol can be

used to enable communication between the services, so its

actions can be coordinated to achieve the end functionalities.

Hardware Prerequisites

In order to achieve this, the hardware needs to be designed

such that its internal components are functionally isolated,

with minimal coupling between its parts and independently

controlled. This is especially important to allow the soft-

ware to abstract the hardware in terms of SOA services.

Apart from the use of a standard bus protocol, such as Wish-

bone [17] and the employment of consistent interfaces for

exchange data/controls, the project itself must support this

degree of decoupling. Without it, maintaining a SOA archi-

tecture might become too difficult and hard to coordinate

operations among different components.

A desirable feature is to make available the information

about the internal components of a certain hardware, as a

means to describe each one of its independent parts, capa-

bilities and topology. With such a feature, the knowledge

about which hardware device is being controlled and what

capabilities it offers can be moved to upper layers of the

FEC. The advantage of this is having a more uniform and

generic abstraction layer and the possibility to use automatic

detection of known components, so to have an out-of-the-

box controllable device. This can be achieved by the use

of a self-describing bus (SDB) [18], which describes all of

the design components, in terms of a unique identification,

name, address range, version and capabilities. The SDB acts

as an addressable memory from the software point of view

and has a fixed layout, making it easy to parse and to extract

all of the components’ properties.

Software Prerequisites

In the software domain, it needs to provide all of the infras-

tructure regarding: (i) module isolation; (ii) communication

protocols to allow the interaction between the modules in

a system and external entities (i.e., other software) running

outside of the system; (iii) easiness of adding, removing or

altering a module without affecting either the other modules

or the existing software infrastructure, typically following

the inversion of control design logic.

BPM PROJECT MODELED USING SOA

PRINCIPLES

The Beam Position Monitor (BPM) project was modeled

according to the SOA principles following the topology de-

picted in Fig. 1 and Fig. 2. The next sections will describe

how the gateware and software parts of the BPM system were

designed, outlining the perceived advantages over more tra-

ditional approaches and possible limitations.

Gateware

The BPM gateware was developed by modularizing the

design in two sets of reusable cores and a project-specific

repository, based on the open-source computer bus Wish-

bone. The first one is composed of acquisition modules, trig-

ger interfaces, PCIe, DDR, FMC ADC interfaces, among

others [19]. The second one is composed of DSP cores,

adders, multipliers, DDS, filters, and specific modules com-

posing the BPM algorithms [20]. The last repository con-

tains the top-level design files and project-specific cores [21]

and its structure can be seen in Fig. 3.

The design follows a hierarchical design written in VHDL

/ Verilog. At the top of the hierarchy, there is a PCIe inter-

face and a Serial RS232 interface. They both pass through

a protocol conversion to support Wishbone master transac-

tions.
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Figure 3: BPM Gateware Architecture.

As a core infrastructure module, there is a Wishbone

Crossbar, implementing independent many-to-many connec-

tions between an arbitrary number of masters and slaves.

Attached to it, the SDB, usually located at address 0x0 and

implemented as a ROM, stores meta-information about the

whole system, including all of the addressable components.

At the bottom of the hierarchy are the peripheral compo-

nents, which could in turn include other Wishbone crossbars

and peripherals, composing a nested architecture. The first

component after the external FMC ADC Board is the FMC

ADC interface itself. It is responsible for ADC data capture

from 4 ADCs, data alignment, clock buffering and for con-

trolling the FMC ADC Board peripherals, such as: Si57x

programmable crystal oscillator, AD9510 clock distribution

and PLL, ISLA216P ADC and 24AA64 EEPROM.

In the sequence, data from all 4 ADCs goes to a deswap-

ping stage, in which signals from ADC channels 1 and 3 are

swapped with signals from channels 2 and 4, respectively,

at a frequency of ≈100 kHz. This implements the digital

part of the switching scheme adopted by the BPM and has a

crucial role in guaranteeing low-frequency (up to half the

swapping frequency) noise suppression [22].

Afterwards, the signal is demodulated via an envelope

detector to extract the amplitude of the 4 signals, which is

then used to calculate the position of the beam by means of

the delta-over-sum method.

The last stage of the BPM signal chain is composed of

a multi-channel acquisition engine capable of acquiring all

of the intermediate steps in the DSP chain, triggered either

by an external signal, a data-driven trigger or a software

trigger. It also supports an arbitrary number of pre- and

post-trigger samples, up to the size of the external SDRAM

memory. Additionally, a trigger multiplexer module selects a

single trigger from its sources and outputs it to the respective

acquisition channel, whereas the trigger interface module

acts as a bridge between the external MLVDS pins available

in the MicroTCA.4 backplane.

There is also some support modules included in the gate-

ware, namely: Diagnostics and Heartbeat & LEDs. The

first one is used to gather some information about the Mi-

croTCA.4 sensors, such as slot number and I2C address. The

second one is a simple 1 Hz heartbeat and basic LED control

for visual feedback purposes.

Software

As for the software part a framework, called Hardware

Abstraction Layer for Control Systems (HALCS) [23], was

developed to take advantage of SOA principles. In a simpli-

fied description the framework provides:

1. Module design interface

2. Inter-module protocol

3. External RPC protocol

4. Communication interfaces (e.g., PCIe and TCP/IP)

5. Composable chip interfaces (e.g., I2C, SPI, GPIO)

6. Automatic module detection (SDB parsing)

In this sense, HALCS provides a set of services (or mod-

ules) controlled by a common RPC protocol, so that upper-

level or client software (e.g., Control System or CLI pro-

grams) can perform its functions. So, in effect, the actual

BPM software architecture is only known at runtime when

the actual group of services, that are discovered by pars-

ing the SDB, are spawned and their communication and
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relationships are set up. Figure 4 shows the BPM software

architecture for the previous BPM gateware of Fig. 3.

On software startup, the Hardware Abstraction Layer

(HAL) (called LLIO in HALCS) is instantiated along with

its hardware interface (PCIe, in the case of the BPM). The

next step taken by HALCS is to try to find and parse the

SDB structure within the device (if the SDB is not found,

no module is spawned and the user needs to perform a man-

ual instantiation). This is performed by the Dispatch En-

gine (called DEVIO in HALCS) and is responsible, among

other things, to register/unregister modules (called SMIO in

HALCS), send/receive control messages to/from SMIOs and

to serialize external protocol messages coming from SMIOs

for dispatching them to HAL.

The External protocol, implemented as an inter-thread

communication protocol, used between SMIOs and DEVIO,

is generally enough to completely abstract a functionality

and the ability to control it in its entirety. This is used in most

of the modules developed so far, as they are self-contained

units that perform very specific functions, such as: Heartbeat

& LEDs, Trigger Mux, Trigger Interface, DAQ, Diagnos-

tics, FMC Misc and DSP. They don’t rely on some intrinsic

startup order or coordination from other modules to cor-

rectly operate. These services, therefore, ideally match the

isolation and composability SOA principles.

However, some more complex modules, such as the FMC

ADC Clock, FMC ADC and Deswap, need additional coordi-

nation. The reason for this is that FMC ADC Clock is respon-

sible for configuring the FMC PLL and FMC clock oscillator,

which drives all of logic in the ADC domain, particularly

the ADCs and the deswap logic to the RFFE [22]. Hence,

these modules cannot start or proceed beyond a certain point

without extra confirmation. If done so, the modules might

not start in a known state and can operate erratically.

For this reason, the FMC ADC Clock module, after com-

pleting the configuration of all of its components, commu-

nicates with the other two modules to inform them a stable

clock is available and ready for use. On receiving this, the

modules can proceed to its functions and perform the neces-

sary actions, such as resetting some parts of the gateware,

recalibrate some components or forcing a rewrite on some

registers. If the clock or PLL needs to be reconfigured, fol-

lowing a request from a client for instance, the same actions

can occur to satisfy this requirement.

This extra coordination is available by means of the Intra-

Controller protocol, implemented in the same way as the

External protocol, but through a different ZeroMQ socket,

and can be used for generic message-passing among the

modules. So far, only control messages were needed, but

other use cases (e.g., periodic status messages) are certainly

possible.

In order to communicate with its clients, the SMIOs are

registered into a Broker, called Malamute [24], and its ex-

ported functionalities are made available. The Broker pro-

vides three important features: reliability, discoverability

and an efficient low-level protocol between clients and ser-

vices. The first one is accomplished by means of heartbeats,

message confirmation, store-and-forward message mecha-

nisms and automatic reconnection. Discoverability is impor-

tant as the clients don’t need to know the endpoints of each

of the services, increasing client-service decoupling. Instead

it can rely on a uniform string identifier and the broker will

dispatch the message to the correct service. The last feature

corresponds to a different protocol from the External pro-

tocol, and is suitable for efficient message-passing between

nodes in a system, implementing many common patterns

in distributed systems (i.e., mailbox, stream and publish-

subscribe). Of particular interest is the mailbox pattern as

it’s particularly suitable for direct messaging between clients

and services and is used for that matter.

Lastly, the clients communicate with the services using

an RPC protocol on top of the low-level broker protocol.

Two of the most important clients worth mentioning: (i) a

set of command-line programs to interact with respective

services, usually used to debug the system or to perform

simple interactions with the services; (ii) the BPM EPICS

driver [25], implemented by mapping the RPC functions to

a set of associated EPICS database records.

BENEFITS OF USING SOA PRINCIPLES

The modularization of the design with these principles,

and in particular by using a framework with characteristics

such as those of HALCS, brings many advantages over more

traditional approaches.

Usually, in order to support a new FPGA design or hard-

ware, the software must be adapted to the new modules,

addresses, protocols and communication interfaces. This in-

curs work on the low-level part of the software, which takes

care of abstracting some FPGA module details. Moreover,

the software clients or applications generally needs rework

as they are either embedded in the same code as the low-level

software or has a non-generic interface unsuitable for reuse.

Even designs that take a more modular approach suffers from

similar drawbacks, rendering the low-level software difficult

to reuse, as it usually controls or abstracts more than just

one component.

The abstraction of FPGA as a set of self-contained com-

ponents and its corresponding software module services (or

SMIOs) works in a way to provide clients with a suitable

abstraction of the component, while not establishing policies.

In this way, the services in HALCS could be thought as a

user-space driver with an RPC interface and the actual appli-

cation pushed over to the client layer, above the Malamute

Broker.

Hence, the establishment of internal framework protocols,

such as the External protocol and Intra-Controller protocol,

provides clean and efficient interfaces to the modules, by

using the fast ZeroMQ inter-thread message-passing, and en-

courages the module developer to design it in a reusable fash-

ion. Coordination between modules can be accomplished

by using the Intra-Controller protocol, adhering to the SOA

principles.
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Figure 4: BPM Software Architecture.

Together with these benefits, the usage of SDB is of much

convenience when developing new gateware designs, as the

already supported software services (e.g., DAQ, Diagnostics,

Trigger, LEDs) will be automatically spawned if a gateware

component matches a known SDB ID and, in turn, its ser-

vices will be exported to the clients with the same interface.

The current development of a new Sirius Timing Receiver

gateware [26] for MicroTCA.4 platform is one example of

these features. By using the same DAQ, Trigger and Diag-

nostics gateware components, it was possible to immediately

use these functionalities and start testing the system without

software modifications.

FUTURE WORK

In order to increase modularity of the HALCS framework

and to allow a faster and easier integration of new SMIOs, a

way to dynamically load new SMIOs without having to re-

compile the software is needed. Currently, this is necessary

as the framework needs to know, at compile time, the SDB

ID of all known components to build the known components’

table. This is, of course, not ideal and requires new develop-

ers to modify the internal build system to include the new

service. To achieve this, a simple approach might be to use

the dlopen()/dlsym()/dlclose() family of functions.

With them, it is possible to dynamically load new services

by building them as a shared library that’s independent of

the HALCS sources.

As for the protocol communication interface both Ex-

ternal protocol and Intra-Controller protocol used within

HALCS are based on inter-thread communication. This is

not completely adhering to the SOA principles as it partly

violates the loose-coupling principle, in the sense that en-

tities related to the same physical hardware device are not

physically independent. To tackle this problem, an option

would be to switch both protocols to the same RPC protocol

already in use for communication with external clients, but

this would incur a longer protocol processing latency and

decreased bandwidth.

CONCLUSION

The principles and benefits of using a SOA approach to a

low-level software/hardware domain were presented, with a

special focus on the main project using it called Sirius BPM

project, as well as a framework for achieving and endorsing

these same principles, named HALCS. New projects, such

as the upcoming MicroTCA.4 timing receiver gateware, can

use the developed infrastructure and gathered knowledge to

save time and design effort.
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