
DISTRIBUTING NEAR REAL TIME MONITORING AND SCHEDULING
DATA FOR INTEGRATION WITH OTHER SYSTEMS AT SCALE

F.J. Joubert∗, M.J. Slabber,
SKA SA, Cape Town, South Africa

Abstract
The MeerKAT radio telescope control system generates

monitoring and scheduling data that internal and external
systems require to operate. Distributing this data in near real
time requires a scalable messaging strategy to ensure optimal
performance regardless of the number of systems connected.
Internal systems include the MeerKAT Graphical User Inter-
face (GUI), the MeerKAT Science Data Processing (SDP)
subsystem and the MeerKAT Correlator and Beamformer
(CBF) subsystem. External systems include Pulsar Tim-
ing User Supplied Equipment (PTUSE), MeerLICHT and
the Search for Extraterrestrial Intelligence (SETI). Many
more external systems are expected to join MeerKAT in the
future. This paper describes the strategy adopted by the
Control And Monitoring (CAM) team to distribute near real-
time monitoring and scheduling data at scale. This strategy
is implemented using standard web technologies and the
publish-subscribe design pattern.

INTRODUCTION
MeerKAT [1] is a mid-frequency "pathfinder" radio tele-

scope and precursor to building the world’s largest and most
sensitive radio telescope, the Square Kilometer Array (SKA).
MeerKAT builds upon its own precursor namely KAT-7, a
seven-dish array currently being used as an engineering and
science prototype.
MeerKAT CAM [2] has a number of systems connected

which require a constant stream of near real time sensor
data updates in order to operate. There are internal systems
including the GUI, the SDP subsystem and the CBF sub-
system. There are also external systems including PTUSE,
MeerLICHT and SETI. Many more systems are scheduled
to be connected to CAM in the coming months and years.
As the demand for live sensor data increases, CAM must be
able to distribute sensor data to all of the interested systems
without negatively impacting the performance of the running
CAM system.
In the existing implementation, users would connect to

CAM webservers using a Python client [3] and subscribe to
sensor data that they were interested in. For each such con-
nection, a Karoo Array Telescope Communication Protocol
(KATCP) [4] connection is created to each component of
interest between the CAM webservers and the CAM system.
This design puts a high load on the CAM webservers as well
as the CAM system.
In order to fix this bottleneck, the CAM software engin-

eering team decided to combine our current monitoring

∗ fjoubert@ska.ac.za

messaging system with an existing high performance mes-
saging system that allows for the use of a publish-subscribe
pattern to enable a scalable distribution of near real time
sensor data.
Several messaging platforms were evaluated. NATS [5]

was found to be the most suitable to our needs. CAM is
also using NATS as a messaging system to archive historical
sensor data [6]. We will not be discussing the archiving of
historical sensor data in this paper.

DATA DISTRIBUTION
The CAM system is distributed over multiple virtualized

machines [7], referred to as CAM nodes. Each CAM node
has a local NATS instance which is connected to all other
NATS instances in the CAM system to form a messaging
cluster. All the CAM components, which run on CAMnodes,
publish messages to the local NATS instance and the NATS
cluster routes the messages to the appropriate subscribers.
A group of webservers runs on one of the CAM nodes,

this node is named the portal node and is collectively known
as Katportal. Katportal acts as the main interface for all
subscriptions by exposing websocket endpoints. Interested
parties connect to the websocket interfaces and execute Re-
mote Procedure Call (RPC) methods to subscribe and unsub-
scribe to subjects on the NATS messaging system. When the
websocket closes all subscriptions are automatically pruned,
therefore, connecting clients need to re-subscribe to subjects
after a disconnect has occurred. Subjects can be individual
sensor names, aggregated subjects that logically combine
numerous individual subjects or application specific sub-
jects.
Additionally, Katportal publishes to application specific

subjects on NATS. These subjects include live observation
scheduling data, current date and time (including local sider-
eal time and the current Julian date), alarms, user authentic-
ation and aggregated sensor subjects. Application specific
subjects makes it more efficient for systems interested in a
logical subsection of CAM to subscribe to certain types of
data, which could be published as various different subjects.
For example; the MeerKAT GUI [8], the operator control
interface known as Katgui, will only subscribe to the obser-
vation scheduling subject in order to receive messages for
all scheduling related updates. An example of an external
system that requires observation scheduling data updates,
is the MeerLICHT optical telescope. MeerLICHT aims to
provide a simultaneous, real-time optical view of the radio
(transient) sky as observed by MeerKAT.

Aggregated subjects are created specifically for use by
Katgui. These subjects typically serve to update one specific

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA137

Integrating Diverse Systems
THPHA137

1703

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Message Bus.

display. For example, the operator control interface will sub-
scribe to a single aggregated subject for all receptor pointing
sensors in order to update the pointing display.
Each CAM component exposes a RPC method to list

sensor values and attributes by subscribing to a unique sub-
ject. The RPC method is called by a system via Katportal.
Katportal executes the RPCmethod by publishing a message
to a specific RPC subject. The message payload contains
a filter string and a unique reply subject (that Katportal
subscribed to before requesting the sensor list). When the
component receives this message, the component compares
the filter string to its own list of sensors and publishes the
current values and attributes for all sensors that matches the
filter string.
This allows for an extremely fast sensor value listing dir-

ectly from CAM components, without the overhead of cre-
ating a direct connection to the component and requesting
its current sensor values for each websocket connection to
Katportal.

NATS Message Bus
NATS provides a lightweight server that is written in the

Go programming language [9]. NATS server provides a
publish-subscribe message distribution model, server clus-
tering, scalability, auto-pruning of subscribers and Trans-
mission Control Protocol (TCP) level reliability for message
delivery. NATS server is a simple, high performance open
source messaging system for cloud native applications, In-
ternet of Things (IoT) messaging, and microservices archi-
tectures.

Figure 1 illustrate how NATS acts as message bus to trans-
port messages between NATS client applications. Figure 2
illustrate how a publisher sends a message on a subject and
all active subscribers listening on that subject receives the
message.
The NATS messaging system allows for wildcard sub-

scriptions, which makes it possible to subscribe to multiple
subjects with a single subscription command. NATS is a

Figure 2: Publish-Subscribe Patter.

fire-and-forget messaging system, if there are no subscribers
listening to a subject, the message is not received.

NATS provides a lightweight Hypertext Transfer Protocol
(HTTP) server on a dedicated port that allows for the mon-
itoring of the NATS cluster. This HTTP server provides
various general statistics, detailed information on current
connections, information on active routes for the cluster and
detailed information about the current subscriptions and the
routing data structure.
NATS supports running each server in clustered mode.

NATS clustered servers have a forwarding limit of one hop.
Therefore a full mesh cluster is recommended for optimal
performance.

To support resiliency and high availability, NATS provides
built-in mechanisms to automatically prune the registered
listener interest graph, which is used to keep track of sub-
scribers. NATS automatically handles a slow consumer and
lazy listeners. If a client is not processing messages quickly
enough, the NATS server cuts it off (disconnected). To
support scaling, NATS provides auto-pruning of client con-
nections. If a subscriber does not respond to ping requests
from the server within a specified ping-pong interval, the
client is cut off. CAM NATS clients have reconnection logic
built in.
NATS benchmarking has shown that a single publishing

client and subscribing client can reach over 1 million mes-
sages per second. The completed MeerKAT CAM system is
not expected to ever reach or exceed 50 000 messages per
second.

Portal Webservers
The portal node hosts various webservers to facilitate the

control and monitoring of the MeerKAT telescope via the
operator control interface, known as Katgui. The various
webservers are collectively known as Katportal. In this paper
we will only discuss the monitoring webserver.

There is no direct interface to the NATS messaging sys-
tem from outside the CAM nodes for internal and external
systems. The monitor webserver exposes websocket end-
points that allows systems to subscribe, unsubscribe and to

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA137

THPHA137
1704

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems



{
"name": "wx_station_wind_speed",
"time": 1506430493.4778199196,
"status": "nominal",
"value_ts": 1506430493.4774999619,
"value": 10.3

}

Table 1: Example sensor sample

list current sensor values and attributes of CAM components
via RPC methods.

When a websocket connection is opened to the monitor
webserver, a NATS client is created in the context of the
websocket connection. The system that created the web-
socket then subscribes to subjects that it is interested in by
executing RPC methods on the monitor webserver. When
components publishes to these subjects, the NATS client
receives the messages and sends them back to the subscriber
over the websocket.
The system that created the websocket connection can

request a listing of current sensor values and attributes. This
is done by executing a RPC method over the websocket that
is defined on the monitor webserver. This RPC method then
publishes a message to NATS, which requests components
to publish their sensor listings to a specified, unique subject.
The monitor webserver can be horizontally scaled over

many nodes by creating multiple monitor webservers that are
utilised in a round-robin fashion. This can be implemented
by using a reverse HTTP proxy like NGINX [10].

Sensor Samples
Within CAM components, sensor values are continuously

updating, the updates are dependent on the function and
internal implementation of the components. These updates
are handed to the message bus broker instance within the
component. The message bus broker decides if the update
should be further propagated (published) and to which sub-
ject. These decisions are based on the current system config-
uration. When a sensor update is to be published, additional
information along with the value and timestamps are packed
into a sample. The typical sample in MeerKAT CAM con-
tains the attributes: value, status, value_ts, time [11].

Before the sample is published to the subject on the mes-
sage bus, the normalised sensor name is added to the sample.
This sample with the sensor name is then encoded into a
JavaScript Object Notation (JSON) [12] object and used as
the message. Refer to Table 1 for an example of a sensor
sample message.

In the sample, the time attribute is a floating point repres-
entation of Unix time, the seconds since 1 January 1970 in
Coordinated Universal Time (UTC).

Sensor Sample Subject
For each sensor two subjects are created on the message

bus, one subject is for sending messages at the archive rate

and a second subject to fill in samples for Katportal, which
requires a faster rate of samples per second. NATS allows
for wildcard subscriptions and Katportal always subscribes
to both subjects using a wild card. Katstore [13], the archive
system, only subscribes to the archive subjects and receives
samples at the lower archive rate, while Katportal subscribes
to both subjects per sensor and receives the samples from
both subjects. The fill-in subject is called the normal subject.
The component that sends the sample onto the message

bus will only send a sample to either the normal or archive
subject. Care has been taken in the implementation to ensure
that messages are not unnecessarily duplicated.
The composition of subjects takes advantage of the wild

card capabilities of NATS. We found that wildcard sup-
port was lacking in many message bus implementations
and even though the implementation in NATS is limited, it
still provides sufficient flexibility and has a low-performance
impact. NATS uses the . (dot) as token delimiter, * (aster-
isk) as the wildcard for one token at any level, and > (greater
than) for any number of tokens at the end of the subject.
All sensor sample subjects have the word sensor as

the first token, then normal or archive followed by the
component and sensor name. To illustrate this we
will use an example weather station, the component
name is wx_station, with a wind speed (wind_speed)
sensor. This component will publish samples to the
subjects sensor.normal.wx_station.wind_speed and
sensor.archive.wx_station.wind_speed. Katstore
is interested in all the archive messages and subscribes
to sensor.archive.>. Katportal has different displays
and depending on the display the user is currently us-
ing it could subscribe to all the sensors on a com-
ponent sensor.*.wx_station.> or to a single sensor
sensor.*.wx_station.wind_speed.

Sensor Attributes
Associated with each sensor are several attributes. A

sensor always has a description and a type with optional
unit and parameters attributes. Katstore stores these sensor
attributes in the database and long-term archive.

The message bus is also used to relay the sensor attribute
information to Katstore. The attributes are static and only
change with software updates, thus the attributes are sent
infrequently and contribute very little to the overall traffic
of the system.
Attributes are sent to a subject per component. The first

token is always "attributes" and the second token is the com-
ponent name. Using the weather station example again, the
component (wx_station) will send the attributes of all its
sensors onto the subject attributes.wx_station. Kat-
store subscribes to all the attribute subjects with the wildcard
subscription attributes.>.

All the attributes of a sensor along with component name,
the sensor’s KATCP [4] name and the normalised sensor
name are packed into a JSON object before it is sent out
onto the message bus. Katstore is flexible in the storage of
attributes and only require the name field (normalised sensor

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA137

Integrating Diverse Systems
THPHA137

1705

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



{
"name": "wx_station_wind_speed",
"katcp_name": "wx_station.wind_speed",
"component": "wx_station",
"type": "float",
"unit": "m/s",
"description": "Runway anemometer"

}

Table 2: Example sensor attributes

name). Refer to Table 2 for an example of a sensor attributes
message.
Since attributes are static it is not needed to send out

the attributes at the same rate as that of sensor samples.
Attributes are sent out the first time the component creates a
sensor object and thereafter at 1 hour intervals.

Rate Limiting - Throttle
At present we have only implemented a throttling mech-

anism to ensure that samples are not sent out to the subjects
faster that what Katstore or Katportal requires. This trivial
implementation keeps an archive and normal backoff interval
and will only send messages out on the respective subjects
if the last message was sent more than the backoff interval
seconds ago.
Future work will look at value change and only send out

the sample if the value has changed and the throttle allows.

Internal and External Systems Use Case
Various internal and external systems require live updates

from CAM in order to operate. Internal clients, like Katgui,
requires live sensor updates in order to facilitate effective
monitoring and controlling of the telescope.
CAM provides a Python client, named Katportalclient,

which other systems use in order to operate. The Python
client creates websockets to Katportal and subscribes to
subjects in the same manner as Katgui.

CONCLUSION
A scalable data distribution system can be created with

relative ease. CAM uses an existing high performance open
source messaging system called NATS. With the messaging
system in place, CAM components publish directly to the
appropriate subjects without the need for an intermediate
monitoring processes, thus greatly reducing the overall sys-
tem load and improving the system responsiveness. CAM
now scales quickly and efficiently to support many connec-
ted systems. NATS is also used to distribute data to the
CAM sensor data archiving system.

REFERENCES
[1] R. S. Booth et al. ‘MeerKAT Key Project Science, Specific-

ations, and Proposals’. In: ArXiv e-prints (2009), pp. 1–16.
arXiv: 0910.2935. http://arxiv.org/abs/0910.2935

[2] N. Marais. ‘MeerKAT Control and Monitoring System Ar-
chitecture’. In: 15th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’15), Mel-
bourne, Australia. JACOW, Geneva, Switzerland. Oct. 2015,
pp. 247–250.

[3] Katportalclient. Sept. 2017. https://github.com/ska-
sa/katportalclient

[4] S. Cross et al. ‘Guidelines for Communication with Devices’.
In: SKA SA, July (2012).

[5] NATS. Sept. 2017. http://nats.io
[6] M.J. Slabber, F.J. Joubert and M.T. Ockards. ‘Scalable

Time Series Documents Store’. In: 16th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’17), Barcelona, Spain. JACOW, Geneva,
Switzerland. Oct. 2017.

[7] N. Marais et al. ‘Virtualization and deployment management
for the KAT-7/MeerKAT control and monitoring system’.
In: 14th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’13), San Francisco,
USA. JACOW, Geneva, Switzerland. Oct. 2013.

[8] M. Alberts and F. Joubert. ‘The MeerKAT Graphical User
Interface Technology Stack’. In: 15th Int. Conf. on Accel-
erator and Large Experimental Physics Control Systems
(ICALEPCS’15), Melbourne, Australia. JACOW, Geneva,
Switzerland. Oct. 2015, pp. 1134–1137.

[9] Go. Sept. 2017. http://golang.org/
[10] Nginx. Sept. 2017. http://nginx.org
[11] M.J. Slabber and M.T. Ockards. ‘Illustrate the Flow of Mon-

itoring Data through the MeerKAT Telescope Control Soft-
ware’. In: 15th Int. Conf. on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’15), Melbourne,
Australia. JACOW, Geneva, Switzerland. Oct. 2015, pp. 849–
852.

[12] T. Bray. The JavaScript Object Notation (JSON) Data Inter-
change Format. RFC 7159 (Proposed Standard). RFC. Fre-
mont, CA, USA: RFC Editor, Mar. 2014. doi: 10.17487/
RFC7159. https : / / www . rfc - editor . org / rfc /
rfc7159.txt

[13] M.J. Slabber. ‘Overview of the monitoring data archive used
on MeerKAT’. In: 15th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’15), Mel-
bourne, Australia. JACOW, Geneva, Switzerland. Oct. 2015,
pp. 1155–1157.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA137

THPHA137
1706

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems


