
THE SLAC COMMON-PLATFORM FIRMWARE FOR
HIGH-PERFORMANCE SYSTEMS

T. Straumann, R. Claus, M. D’Ewart, J. Frisch, G. Haller, R. Herbst, B. Hong, U. Legat, L. Ma,
J. Olsen, B. Reese, L. Ruckman, L. Sapozhnikov, S. Smith, D. Van Winkle, E. Williams,

J. Vasquez Stanescu, M. Weaver, C. Xu, A. Young, SLAC, Menlo Park, California, USA

Abstract
LCLS-II’s high beam rate of almost 1MHz and the re-

quirement that several “high-performance” systems (such
as MPS, BPM, LLRF, timing etc.) shall resolve individual
bunches precludes the use of a traditional software based
control system but requires many core services to be imple-
mented in FPGA logic. SLAC has created a comprehensive
open-source firmware framework which implements many
commonly used blocks (e.g., timing, globally-synchronized
fast data buffers, MPS, diagnostic data capture), libraries
(Ethernet protocol stack, AXI interconnect, FIFOs, mem-
ory etc.) and interfaces (e.g., for timing, diagnostic data
etc.) thus providing a versatile platform on top of which
powerful high-performance systems can be built and rapidly
integrated.

INTRODUCTION
The next generation Linac Coherent Light Source (LCLS)

has many High Performance System (HPS) sub-systems:
• Beam Charge Monitor (BCM)
• Beam Length Monitor (BLEN)
• Beam Position Monitor (BPM)
• Low-Level Radio Frequency (LLRF)
• Machine Protection System (MPS)
• Timing System
While each specific HPS sub-system has some unique

requirements, they all share the same base requirements:
• Intelligent Platform Management Interface (IPMI)
• Timing Network
• Experimental Physics and Industrial Control System
(EPICS) Network

• MPS network
The motivation for developing a HPS common platform

is to do the following:
• Identify areas of commonality within LCLS-II, LCLS-I,
and SLAC in general

• Define intra HPS interfaces and interconnects
• Ensure application specific firmware and software is
consistent with core library, portable, parameterized,
and reusable in future systems

The HPS common platform provides the base hardware,
base firmware, and base software for all LCLS-II (and even-
tually LCLS-I) sub-systems [1]. The common platform is
an Ethernet Network Access Device (NAD) based module.
Figure 1 shows the default packaging solution, which is a
7-slot Advanced Telecommunications Computing Architec-
ture (ATCA) crate.

Figure 1: Crate Network Block Diagram.

COMMON PLATFORM HARDWARE
The common platform hardware is an ATCA Advanced

Mezzanine Card (AMC) carrier board. A block diagram
of the carrier board is shown in Fig. 2, and a photograph
of the AMC carrier is shown in Fig. 3. The AMC carrier
supports two double-wide, full height mezzanine cards. An
AMC is where the application specific hardware exists for a
given HPS sub-system. Figure 4 shows some examples of
application specific hardware that has been developed for the
common platform carrier board. The AMC carrier provides
the following interconnects and power to each of the AMCs:

• Unfiltered, switching +12VDC power (up to 9A)
• Filtered, switching +2VDC power (up to 3A)
• Filtered, switching +4VDC power (up to 3A)
• Filtered, switching +6VDC power (up to 3A)
• Filtered, switching +15VDC power (up to 0.5A)
• Filtered, switching -15VDC power (up to 0.5A)
• 7 - 10 high speed FPGA I/Os, (Up to 10Gbps)
• 86 low speed FPGA I/Os, (Up to 1Gbps)
• 2 differential pairs between AMCs on the same carrier
• 2 differential pairs between AMC and RTM
The main controller on the AMC carrier is a Xilinx Kin-

tex Ultrascale Field-Programmable Gate Array (FPGA).
There are two loading options for this FPGA: XCKU040-
2FFVA1156E (7 high speed links per AMC) or XCKU060-
2FFVA1156E (10 high speed links per AMC). XCKU040-
2FFVA1156E is the default loading option. Attached to
the FPGA is a standard 8GB DDR3 SODIMM for local
buffering of large amounts of data.
To help minimize cabling to the common platform hard-

ware, the ATCA back plane is highly utilized. We are using
a dual-star back plane. In ATCA slot#1 (1st star connection),
we use a Commercial Off The Self (COTS) Ethernet switch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPL08

THMPL08
1286

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

Figure 2: Hardware Block Diagram.

Figure 3: Photograph of the AMC carrier with RTM.

to connect Ethernet to all the AMC carriers via the back
plane’s zone2 interface. In ATCA slot#2 (2nd star connec-
tion), we use an AMC carrier to connect all the other AMC
carriers to the timing and MPS networks via the back plane’s
zone2 interface as well. The slot#2 AMC carrier’s external
connection to the timing and MPS networks is via a Rear
Transition Module (RTM). There is only one RTM required
per ATCA crate in the HPS common platform system. The
ATCA Zone1 back place interface provides the AMC carri-
ers with -48VDC power (up to 300W) and an IPMI network
interface.

COMMON PLATFORM FIRMWARE

The purpose of the common platform firmware is to pro-
vide the common firmware interfaces and functional mod-
ules required by all or many applications. A block diagram of
the carrier board is shown in Fig. 5. The top-level firmware
is partitioned into two sections: Common Platform Core and
Application Core. The Common platform core firmware is
used in all firmware builds whereas the application core is
the unique firmware specific to the application.

Figure 4: Examples of Application Specific Hardware.

Figure 5: Overall Firmware Block Diagram.

The SURF Library
The backbone of the common platform firmware frame-

work is the SLAC Ultimate RTL Framework (SURF). SURF
is an open source firmware library that is developed, sup-
ported and maintained by SLAC on Github [2]. Here are
some of the common SURF IP core libraries used application
engineers:

• Ethernet: 1000BASE, 10G-BASE, XAUI, IPv4, ARP,
DHCP, ICMP, UDP

• AXI4: Crossbar, DMA, FIFO, etc.
• AXI4-Lite: Crossbar, AXI4-to-AXI4-Lite bridge, etc.
• AXI4 stream: DMA, MUX, FIFO, etc.
• Devices: ADI, Linear, Micron, TI, etc.
• Synchronization: Synchronize bits, buses, vectors, re-
sets, etc.

• Wrapped Xilinx IPs: Clock managers, SEM, DNA,
IPROG

• Serial Protocols: I2C, SPI, UART, JESD204B, etc.
Application firmware engineers are able to develop their
firmware faster by leveraging this firmware library resource.

Networking Support The common platform Ethernet
core uses a firmware-based 5-layer Ethernet stack (see Fig. 6).
The first layer is a Xilinx 10 Gigabit Attachment Unit Inter-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPL08

Hardware Technology
THMPL08

1287

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

face (XAUI) physical layer (PHY). We are using the Xilinx
XAUI PHY IP core [3]. The Ethernet Media Access Con-
troller (MAC) is the 2nd Ethernet layer. The MAC is part of
the SURF firmware library and has the following features:

• MAC address filtering
• Pause Flow control
• Cyclic Redundancy Check (CRC) generation/verifica-
tion

The MAC address for this firmware module is stored an on-
board IPMI PROM. Each AMC carrier is programmed with
an unique MAC address.

The IPv4 engine is the 3rd Ethernet layer. The IPv4 engine
is part of the SURF firmware library and has the following
features:

• Integrated ARP engine for ARP requests/replies
• Integrated ICMP engine to reply back to standard Eth-
ernet pings

• IP address filtering
• IPv4 protocol type filtering
• IPv4 header checksum generation/verification
The UDP engine is the 4th Ethernet layer. The UDP

engine is part of the SURF firmware library and has the
following features:

• UDP checksum generation/verification
• UDP port filtering/routing
SLAC Streaming Interface (SSI) is a particular messaging

definition on top of AXI4 streaming. It uses the AXI4 Stream
base protocol with definitions (within the allowable AXI4
Stream standard) for EOFE (end of frame with error) and
SOF (start of frame) in the USER fields.

Reliable SLAC Streaming Interface (RSSI) engine is the
5th Ethernet layer and is the reliable communications layer
based upon RUDP (Cisco implementation: refer to RFC-908
and RFC-1151) [4]. The RSSI engine handles the handshak-
ing for re-transmission to another RSSI firmware engine (or
RSSI software driver) and provides a flow control mecha-
nism. The user application interface to the RSSI engine is a
SSI interface.
While our firmware Ethernet stack does support DHCP

in the UDP engine, for network management simplicity we
do not enable this feature in our common platform firmware
implementation. Instead we automatically generate the IP
address from the ATCA slot number and ATCA crate ID:

• IP Address: 10.x.y.z
– x = upper 8 bits of crate ID
– y = lower 8 bits of crate ID
– z = 100 + ATCA logical slot #

Each ATCA crate has a unique 16-bit crate ID in our system.

Timing and BSA Support
A block diagram of the Beam Synchronous Acquisition

(BSA)/Timing firmware core is shown in Fig. 7. BSA allows
synchronously time-stamped measurements across multiple
distributed sub-systems (e.g., capture of synchronous orbits
involving many BPMs). Measurements are acquired into a
deep on-board buffer in real-time and eventually read out by
software for off-line processing.

Figure 6: Firmware Ethernet Stack.

Figure 7: Timing Core Block Diagram.

The timing core is connected to the zone2 back plane tim-
ing network and forwards the decoded timingmessages to the
application firmware and the BSA engine. The BSA engine
receives 1 MHz measurement results from the application.
The BSA Engine supports up to 64 individual acquisition
arrays. The engine queues the application’s 1MHz data to
DDR3 memory for some subset of the 64 arrays as indicated
by the timing message. The timing message also provides an
update request to the BSA Engine to notify the application
software to initiate read back of the arrays.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPL08

THMPL08
1288

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

Figure 8: DDR Memory Performance.

We have performed both simulated and non-simulated
measurements of the FPGA’s DDR3 memory performance.
Figure 8 shows the DDR3 memory performance for both
simulation and measurement as a function of the AXI burst
length. The 64-bit DDR3 memory runs at 1600 MT/s (102.4
Gbps peak throughput). While there are faster than 1600
MT/s DDR3 SODIMMs on the market, the 1600 MT/s is
limited by the switching spead of the FPGA I/Os. If we
write/read at maximum burst size (4kB), we are able to
achieve 80 Gbps writes and 65 Gbps read.

FPGA Boot Process
The FPGA uses a two-stage booting process for loading

the firmware. A flow cart of this two stage process is shown
in Fig. 9. At power up the FPGA will always load the First
Stage Bootloader (FSBL). The FSBL does a DDR memory
test before booting into the second stage. The firmware-base
memory tester writes pseudo-random data to the entire mem-
ory space then reads back the entire memory space to verify
pseudo-random data was written. This memory test takes
less than 2 seconds after power up. If the memory test failed,
the FSBL does not boot into the next stage. If the DDR
memory test passes, the FSBL will boot into the second
stage. The second stage base address is determined by the
IPMI interface. The hardware supports up to 4 firmware
images (1 FSBL + 3 non-FSBL) in a 1 Gb FLASH PROM.
The non-FSBL images can be remotely reprogramming via
the Zone2 Ethernet interface. The FSBL image is protected
by the PROM’s hardware write protection pin [5] and can-
not be reprogrammed without installing a physical jump on
the board. If the non-FSBL image gets corrupted during a
remote reprogramming process, the IPMI can set the second
stage base address to zero to keep the FSBL from transition-
ing to non-FSBL image. While running the FSBL image
the system can remotely reprogram the non-FSBL image to
recover from such an failure state.

SOFTWARE SUPPORT
A software block-diagram for a typical application is

shown in Fig. 10.

Figure 9: Two-Stage FPGA Bootloading Process.

Figure 10: Software Organization.

The Common Platform Software (CPSW) provides a com-
mon interface to the FPGA for all high-level software [6]. It
is written in C++ and highly objected oriented making exten-
sive use of smart pointers and RAII. It is designed for access
to services with varying degree of exposed detail and offers
three different APIs with decreasing level of abstraction:

• User API: provides access to a device hierarchy, previ-
ously defined using the builder API, without explicit
knowledge about details of communication (ports, reg-
ister addresses, endianness, ...).

• Builder API: it is used for assembling a hierarchy from
predefined blocks, defining the topology and providing
the necessary parameters, like ports, register offsets,
endianness, among others.

• Developer API: it gives access to all details, and can
be used for defining more complex objects and extend
CPSW itself.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPL08

Hardware Technology
THMPL08

1289

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

E.g., CPSW provides an elementary building block called
ScalVal. It represents a generic scalar value with pro-
grammable parameters (Bit-width, Bit-offset, Endianness,
Signed-ness, Arrays of multiple elements with definable
stride), visible to the builder API. From the User API, Scal-
Val provides simple access via the methods getVal() and
setVal(), for reading and writing respectively while all de-
tails remain hidden.

Builder API
When building the hierarchy, two main steps are required:
• Create an entity with the desired parameters.

I n t F i e l d p r o p e r t y = I I n t F i e l d : : c r e a t e (
" p r o p e r t y " , / / name
16 , / / s i z e i n b i t s
f a l s e , / / i s _ s i g n e d ?
0) ; / / b i t − o f f s e t o f l s b

• Attached the entity to a parent.

mmio−>addAtAddress (
p r o p e r t y , / / c h i l d
0x030 , / / o f f s e t
1) ; / / number o f e l e m e n t s

CPSW provides the following building blocks:
• ScalVal: a “leaf”, representing a scalar value/number;
directly manipulated by the user API.

• Stream: another “leaf”. Provides raw access to network
protocols above the transport layer (RSSI) for special
applications.

• MMIO: a memory-mapped container block. MMIOs
can be nested.

• NetIO; a container block which implements network
communication using a configurable “stack” of proto-
col modules.

CPSW provides an alternative way of describing the hard-
ware by using YAML files [7]. The YAML files are pro-
vided by the firmware build system and represent a concise
description of all firmware entities including all relevant
parameters (protocol stack details, register offset and sizes,
etc.). A CPSW YAML interpreter uses the builder API to
automatically construct the system.

User API
In order to access an entity in the hierarchy, three main

steps are required by the user:
• Navigate the hierarchy via Path objects which identify
an entity using names (string), similar to file system
paths. The most basic operation is the lookup, which
allows the user to find a specific entity.

Pa th p = roo t −>findByName (" / some / dev ") ;

• An object which instantiates the desired user interface
of the entity can be created.

Sca lVa l p r o p e r t y = IS c a lVa l : : c r e a t e (p) ;

• Subsequently, the property may be accessed via the
instantiated interface.

Figure 11: Communication Stack.

p r op e r t y −>ge tVa l (& i n t 3 2 _ v a r i a b l e) ;

FPGA Communication stack:
Communication with FPGAs is established using propri-

etary protocols layered on top of UDP (see Fig. 11):
• SRP (Slac Register Protocol): RPC-style (but much
more primitive) messages fitting into a single MTU.
Request/reply for reading/writing 32bit words.

• Packetizer/Depacketizer: Messages which can be much
larger than a MTU and are fragmented/reassembled.

• TDEST De/mux: Allows multiple destinations to share
a common (De-)Packetizer/RSSI/UDP channel.

• RSSI (see subsection “Networking Support”)

CONCLUSION
The SLAC common platform is a comprehensive frame-

work of hardware, firmware and software components for
supporting FPGA-based control- and data-acquisition sys-
tems. It greatly simplifies application development, reduces
redundant efforts and enhances efficient use of engineering
resources.

REFERENCES

[2] SLAC Ultimate RTL Framework (SURF) on Github:
https://github.com/slaclab/surf

[3] Xilinx’s XAUI PHY IP core Homepage: https://www.
xilinx.com/products/intellectual-property/xaui.
html

[4] SLAC’s RSSI Documentation Homepage: https:
//confluence.slac.stanford.edu/x/1IyfD

[5] MT25QL01 Datasheet: https://www.micron.com/~/
media/documents/products/data-sheet/nor-flash/
serial-nor/mt25q/die-rev-b/mt25q_qlkt_l_01g_
bbb_0.pdf

[7] O. Ben-Kiki, C. Evans and I. döt Net, “YAML Ain’t Markup
Language,” http://yaml.org/spec/1.2/spec.html

[1] J. Frisch et al., “A FPGA Based Common Platform for
LCLS2 Beam Diagnostics and Controls, in Proc. IBIC’16,
Barcelona, Spain, 2016, paper WEPG15.

[6] T. Straumann et al., “New Controls Platform for SLAC
High-Performance Systems,” in Proc. PCAPAC’16, Campi-
nas, Brazil, 2016.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPL08

THMPL08
1290

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

